Merge pull request #1 from ngiddings/mmgr

Mmgr
This commit is contained in:
Nathan Giddings
2020-07-15 06:55:56 -05:00
committed by GitHub
44 changed files with 1521 additions and 1153 deletions

10
.gitignore vendored Normal file → Executable file
View File

@@ -1,3 +1,7 @@
bin/qkernel quark.iso
bin/*.o src/quark-kernel
bin/*~ src/interrupts/libinterrupts.a
*.o
*~
rootfs/
test/

14
Makefile Normal file
View File

@@ -0,0 +1,14 @@
.PHONY: all
all: quark.iso
quark.iso: src/quark-kernel
cp src/quark-kernel rootfs/apps
grub-mkrescue -o $@ rootfs
src/quark-kernel:
make -C src
.PHONY: clean
clean:
make -C src clean
rm -f quark.iso

0
README.md Normal file → Executable file
View File

View File

@@ -1,16 +1,18 @@
objs = math.o cstring.o error.o pagetableentry.o physicalmemoryallocator.o multiboot2header.o entry.o quarkkernel.o objs = addressspace.o tty.o buddyallocator.o math.o cstring.o pagetableentry.o multiboot2header.o systeminfo.o memorymap.o pio.o entry.o quarkkernel.o
link_script = linker.ld
quark_bin = qkernel
CXX = i686-elf-g++ CXX = i686-elf-g++
CC = i686-elf-gcc CC = i686-elf-gcc
CPPFLAGS += -ffreestanding -O2 -Wall -Wextra -fno-exceptions -fno-rtti CXXFLAGS = -ffreestanding -mgeneral-regs-only -O0 -Wall -fno-exceptions -fno-rtti -ggdb
LDFLAGS = -T linker.ld -lgcc -nostdlib
all: $(objs) quark-kernel: $(objs) linker.ld interrupts/libinterrupts.a
echo $(PATH) $(CXX) -o $@ $(LDFLAGS) interrupts/libinterrupts.a $(objs)
i686-elf-g++ -o $(quark_bin) -T $(link_script) -ffreestanding -nostdlib -O2 $(objs) -lgcc
interrupts/libinterrupts.a:
make -C interrupts CXX="$(CXX)" CC="$(CC)" CXXFLAGS="$(CXXFLAGS)"
.PHONY: clean
clean: clean:
rm *.o make -C interrupts clean
rm -f $(quark_bin) rm -f $(objs) quark-kernel

51
src/addressspace.cpp Normal file
View File

@@ -0,0 +1,51 @@
#include "addressspace.hpp"
kernel::AddressSpace::AddressSpace(MemoryAllocator& malloc)
: malloc(malloc)
{
this->pageTables = (PageTableEntry*) 0xFFC00000;
this->pageDirectory = (PageTableEntry*) 0xFFFFF000;
}
void* kernel::AddressSpace::mmap(void* start, size_t length)
{
size_t tableIndex = (size_t) start / 4096;
for(int i = (int) length; i > 0; i -= 4096)
{
size_t directoryIndex = tableIndex / 1024;
if(!pageDirectory[directoryIndex].getPresent())
{
physaddr_t newPT = malloc.allocate(4096);
pageDirectory[directoryIndex] = newPT;
pageDirectory[directoryIndex].setPresent(true);
pageDirectory[directoryIndex].setUsermode(false);
pageDirectory[directoryIndex].setRw(true);
}
if(!pageTables[tableIndex].getPresent())
{
physaddr_t page = malloc.allocate(4096);
pageTables[tableIndex] = page;
pageTables[tableIndex].setUsermode(false);
pageTables[tableIndex].setRw(true);
pageTables[tableIndex].setPresent(true);
}
tableIndex++;
}
return start;
}
void kernel::AddressSpace::munmap(void* start, size_t length)
{
}
physaddr_t kernel::AddressSpace::getPhysicalAddress(void* virtualAddress)
const
{
size_t index = (size_t) virtualAddress / 4096;
PageTableEntry pte = pageTables[index];
if(pte.getPresent())
return pte.getPhysicalAddress();
else
return 0;
}

42
src/addressspace.hpp Executable file
View File

@@ -0,0 +1,42 @@
#ifndef SRC_ADDRESSSPACE_H_
#define SRC_ADDRESSSPACE_H_
#include <stddef.h>
#include "memoryallocator.hpp"
#include "pagetableentry.hpp"
#include "systypes.hpp"
namespace kernel {
class AddressSpace {
public:
AddressSpace(MemoryAllocator& malloc);
void* mmap(void* start, size_t length);
void munmap(void* start, size_t length);
physaddr_t getPhysicalAddress(void* virtualAddress) const;
private:
MemoryAllocator& malloc;
/**
* Array of 1024 page tables, each containing 1024 entries.
* The last table represents the page directory.
*/
PageTableEntry* pageTables;
/**
* Array of 1024 PDEs, located at the end of the pageTables array
*/
PageTableEntry* pageDirectory;
};
} /* namespace kernel */
#endif

View File

@@ -1,609 +0,0 @@
/*
* Bitmap.h
*
* Created on: Jun 1, 2019
* Author: nathan
*/
#ifndef SRC_BITMAP_H_
#define SRC_BITMAP_H_
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
namespace qkernel {
/**
* Represents a fixed array of N bits. Somewhat analogous to std::bitset. Can
* be manipulated using standard arithmetic operators (&, |, ^, ~).
*/
template <size_t N>
class Bitmap {
public:
/**
* A proxy object used to reference an individual bit contained in a Bitmap object.
*/
class Reference
{
public:
/**
* Construct a reference to a bit contained in a Bitmap object.
*
* @param data A reference to the byte in which the referenced bit is
* contained
* @param position The position of the referenced bit inside 'data.' 0
* denotes the least significant bit; 7 denoted the most significant
* bit.
*/
Reference(uint8_t& data, size_t position);
/**
* Sets the bit referenced by this object to 'b'
*
* @returns a reference to this object
*/
Reference& operator=(const bool b);
/**
* Sets the bit referenced by this object to the value of the bit
* referenced by 'r.'
*
* @returns a reference to this object
*/
Reference& operator=(const Reference& r);
/**
* @returns the inverse of the value of the bit referenced by this
* object.
*/
bool operator~() const;
/**
* Converts the bit referenced by this object to a boolean, whose value
* is 'true' if the bit referenced it set, and false if it is clear.
*/
operator bool() const;
private:
uint8_t& data;
size_t position;
};
/**
* Constructs a bitmap containing 'N' bits, containing uninitialized
* data.
*/
Bitmap();
/**
* Constructs a bitmap containing 'N' bits, copying data from 'bitmap' into
* the new object.
*/
Bitmap(const Bitmap<N>& bitmap);
/**
* Constructs a bitmap containing 'N' bits, initializing each bit to 'v.'
*/
Bitmap(const bool value);
/**
* Constructs a bitmap containing 'N' bits, initializing the first 32 bits
* to the bits contained in 'value.' If the bitmap contains more than 32
* bits, the rest are initialized to 0.
*/
Bitmap(const uint8_t value);
/**
* Constructs a bitmap containing 'N' bits, initializing the first 32 bits
* to the bits contained in 'value.' If the bitmap contains more than 32
* bits, the rest are initialized to 0.
*/
Bitmap(const uint16_t value);
/**
* Constructs a bitmap containing 'N' bits, initializing the first 32 bits
* to the bits contained in 'value.' If the bitmap contains more than 32
* bits, the rest are initialized to 0.
*/
Bitmap(const uint32_t value);
/**
* @returns the number of bits stored in this bitmap
*/
size_t size();
/**
* @returns the number of bits that are set
*/
size_t count();
/**
* @returns true if all bits are set; otherwise false.
*/
bool all();
/**
* @returns true if at least one bit is set; otherwise false.
*/
bool any();
/**
* @returns true if all bits are cleared; otherwise false.
*/
bool none();
/**
* Sets all bits in this bitmap.
*
* @returns a reference to this bitmap
*/
Bitmap<N>& set();
/**
* Clears all bits in this bitmap.
*
* @returns a reference to this bitmap
*/
Bitmap<N>& clear();
/**
* Compares the contents of 'bitmap' and this bitmap.
*
* @param bitmap The bitmap to compare this object to.
*
* @returns true only if each bit in 'other' is equal to each bit in this
* bitmap; otherwise false.
*/
bool operator==(const Bitmap<N>& other) const;
/**
* Compares the contents of 'bitmap' and this bitmap.
*
* @param bitmap The bitmap to compare this object to.
*
* @returns false only if each bit in 'other' is equal to each bit in this
* bitmap; otherwise true.
*/
bool operator!=(const Bitmap<N>& other) const;
/**
* Accesses the bit at 'index.' Does not perform bounds checking;
* out-of-bounds access will result in problems.
*
* @param index The position in the bitmap to access
*
* @returns a reference to the bit at 'index'
*/
Reference operator[](const size_t index);
/**
* Accesses the bit at 'index.' Does not perform bounds checking;
* out-of-bounds access will result in problems.
*
* @param index The position in the bitmap to access
*
* @returns the value of the bit at position 'index'
*/
bool operator[](const size_t index) const;
/**
* @returns a bitmap containing the bitwise AND of this bitmap and 'other.'
*/
Bitmap<N> operator&(const Bitmap<N>& other) const;
/**
* Sets the value of this bitmap to the bitwise AND of this bitmap and
* 'other.'
*
* @returns a reference to this bitmap
*/
Bitmap<N>& operator&=(const Bitmap<N>& other);
/**
* @returns a bitmap containing the bitwise OR of this bitmap and 'other.'
*/
Bitmap<N> operator|(const Bitmap<N>& other) const;
/**
* Sets the value of this bitmap to the bitwise OR of this bitmap and
* 'other.'
*
* @returns a reference to this bitmap
*/
Bitmap<N>& operator|=(const Bitmap<N>& other);
/**
* @returns a bitmap containing the bitwise XOR of this bitmap and 'other.'
*/
Bitmap<N> operator^(const Bitmap<N>& other) const;
/**
* Sets the value of this bitmap to the bitwise OR of this bitmap and
* 'other.'
*
* @returns a reference to this bitmap
*/
Bitmap<N>& operator^=(const Bitmap<N>& other);
/**
* Shifts this bitmap 'n' bits left.
*
* @returns a new Bitmap containing the result
*/
Bitmap<N> operator<<(const size_t n) const;
/**
* Shifts this bitmap 'n' bits left.
*
* @returns a reference to this bitmap
*/
Bitmap<N>& operator<<=(const size_t n);
/**
* Shifts this bitmap 'n' bits right.
*
* @returns a new Bitmap containing the result
*/
Bitmap<N> operator>>(const size_t n) const;
/**
* Shifts the bitmap 'n' bits right.
*
* @returns a reference to this bitmap
*/
Bitmap<N>& operator>>=(const size_t n);
/**
* Computes the bitwise NOT of this bitmap
*
* @returns a new bitmap containing the result
*/
Bitmap<N> operator~() const;
private:
uint8_t data[(N / 8) + 1];
};
} /* namespace qkernel */
template<size_t N>
inline qkernel::Bitmap<N>::Reference::Reference(uint8_t& data, size_t position)
: data(data)
{
this->position = position;
}
template<size_t N>
inline typename qkernel::Bitmap<N>::Reference& qkernel::Bitmap<N>::Reference::operator =(const bool b) {
if(b)
{
data |= 1 << position;
}
else
{
data &= ~(1 << position);
}
return *this;
}
template<size_t N>
inline typename qkernel::Bitmap<N>::Reference& qkernel::Bitmap<N>::Reference::operator =(const Reference& r) {
if((bool) r)
{
data |= 1 << position;
}
else
{
data &= ~(1 << position);
}
}
template<size_t N>
inline bool qkernel::Bitmap<N>::Reference::operator ~() const {
return !((bool) (*this));
}
template<size_t N>
inline qkernel::Bitmap<N>::Reference::operator bool() const {
uint8_t value = data & (1 << position);
if((data & (1 << position)) != 0)
{
return true;
}
else
{
return false;
}
}
template<size_t N>
inline qkernel::Bitmap<N>::Bitmap() {
}
template<size_t N>
inline qkernel::Bitmap<N>::Bitmap(const Bitmap<N>& bitmap) {
for(size_t i = 0; i < N; i++)
{
(*this)[i] = bitmap[i];
}
}
template<size_t N>
inline qkernel::Bitmap<N>::Bitmap(const bool value) {
for(size_t i = 0; i < N; i++)
{
(*this)[i] = value;
}
}
template<size_t N>
inline qkernel::Bitmap<N>::Bitmap(uint8_t value) {
size_t max = N >= 8 ? 8 : N;
for(size_t i = 0; i < max; i++)
{
(*this)[i] = value & 1;
value >>= 1;
}
}
template<size_t N>
inline qkernel::Bitmap<N>::Bitmap(uint16_t value) {
size_t max = N >= 16 ? 16 : N;
for(size_t i = 0; i < max; i++)
{
(*this)[i] = value & 1;
value >>= 1;
}
}
template<size_t N>
inline qkernel::Bitmap<N>::Bitmap(uint32_t value) {
size_t max = N >= 32 ? 32 : N;
for(size_t i = 0; i < max; i++)
{
(*this)[i] = value & 1;
value >>= 1;
}
}
template<size_t N>
inline size_t qkernel::Bitmap<N>::size() {
return N;
}
template<size_t N>
inline size_t qkernel::Bitmap<N>::count() {
size_t count = 0;
for(size_t i = 0; i < N; i++)
{
if((*this)[i] == true)
{
count++;
}
}
return count;
}
template<size_t N>
inline bool qkernel::Bitmap<N>::all() {
for(size_t i = 0; i < N; i++)
{
if((*this)[i] == false)
{
return false;
}
}
return true;
}
template<size_t N>
inline bool qkernel::Bitmap<N>::any() {
for(size_t i = 0; i < N; i++)
{
if((*this)[i] == true)
{
return true;
}
}
return false;
}
template<size_t N>
inline bool qkernel::Bitmap<N>::none() {
for(size_t i = 0; i < N; i++)
{
if((*this)[i] == true)
{
return false;
}
}
return true;
}
template<size_t N>
inline qkernel::Bitmap<N>& qkernel::Bitmap<N>::set() {
for(size_t i = 0; i < N; i++)
{
(*this)[i] = true;
}
return *this;
}
template<size_t N>
inline qkernel::Bitmap<N>& qkernel::Bitmap<N>::clear() {
for(size_t i = 0; i < N; i++)
{
(*this)[i] = false;
}
return *this;
}
template<size_t N>
inline bool qkernel::Bitmap<N>::operator ==(const Bitmap<N>& other) const {
for(size_t i = 0; i < N; i++)
{
if((*this)[i] != other[i])
{
return false;
}
}
return true;
}
template<size_t N>
inline bool qkernel::Bitmap<N>::operator !=(const Bitmap<N>& other) const {
return !((*this) == other);
}
template<size_t N>
inline typename qkernel::Bitmap<N>::Reference qkernel::Bitmap<N>::operator [](const size_t index) {
return Reference(data[index / 8], index % 8);
}
template<size_t N>
inline bool qkernel::Bitmap<N>::operator [](const size_t index) const {
return (data[index/8] & (1 << (index % 8))) == 0 ? false : true;
}
template<size_t N>
inline qkernel::Bitmap<N> qkernel::Bitmap<N>::operator &(const Bitmap<N>& other) const {
Bitmap<N> result;
for(size_t i = 0; i < N; i++)
{
result[i] = (*this)[i] && other[i];
}
return result;
}
template<size_t N>
inline qkernel::Bitmap<N>& qkernel::Bitmap<N>::operator &=(const Bitmap<N>& other) {
for(size_t i = 0; i < N; i++)
{
(*this)[i] = (*this)[i] && other[i];
}
return *this;
}
template<size_t N>
inline qkernel::Bitmap<N> qkernel::Bitmap<N>::operator |(const Bitmap<N>& other) const {
Bitmap<N> result;
for(size_t i = 0; i < N; i++)
{
result[i] = (*this)[i] || other[i];
}
return result;
}
template<size_t N>
inline qkernel::Bitmap<N>& qkernel::Bitmap<N>::operator |=(const Bitmap<N>& other) {
for(size_t i = 0; i < N; i++)
{
(*this)[i] = (*this)[i] || other[i];
}
return *this;
}
template<size_t N>
inline qkernel::Bitmap<N> qkernel::Bitmap<N>::operator ^(const Bitmap<N>& other) const {
Bitmap<N> result;
for(size_t i = 0; i < N; i++)
{
result[i] = (*this)[i] ^ other[i];
}
return result;
}
template<size_t N>
inline qkernel::Bitmap<N>& qkernel::Bitmap<N>::operator ^=(const Bitmap<N>& other) {
for(size_t i = 0; i < N; i++)
{
(*this)[i] = (*this)[i] ^ other[i];
}
return *this;
}
template<size_t N>
inline qkernel::Bitmap<N> qkernel::Bitmap<N>::operator <<(const size_t n) const {
Bitmap<N> result;
for(size_t i = 0; i < N; i++)
{
if(i < n)
{
result[i] = false;
}
else
{
result[i] = (*this)[i-n];
}
}
return result;
}
template<size_t N>
inline qkernel::Bitmap<N>& qkernel::Bitmap<N>::operator <<=(const size_t n) {
for(size_t i = 0; i < N; i++)
{
if(i == 0)
{
(*this)[i] = 0;
}
else
{
(*this)[i] = (*this)[i-1];
}
}
return *this;
}
template<size_t N>
inline qkernel::Bitmap<N> qkernel::Bitmap<N>::operator >>(const size_t n) const {
Bitmap<N> result;
for(size_t i = 0; i < N; i++)
{
if(i > N - n)
{
result[i] = false;
}
else
{
result[i] = (*this)[i+n];
}
}
return result;
}
template<size_t N>
inline qkernel::Bitmap<N>& qkernel::Bitmap<N>::operator >>=(const size_t n) {
for(size_t i = N - 1; i >= 0; i--)
{
if(i == N - 1)
{
(*this)[i] = 0;
}
else
{
(*this)[i] = (*this)[i+1];
}
}
return *this;
}
template<size_t N>
inline qkernel::Bitmap<N> qkernel::Bitmap<N>::operator ~() const {
Bitmap<N> result;
for(size_t i = 0; i < N; i++)
{
result[i] = !(*this)[i];
}
return result;
}
#endif /* SRC_BITMAP_H_ */

253
src/buddyallocator.cpp Executable file
View File

@@ -0,0 +1,253 @@
#include "buddyallocator.hpp"
#include "math.h"
#include "systypes.hpp"
#include "memorymap.hpp"
#define roundUp(n, m) ((n % m == 0) ? n : (n + m - (n % m)))
kernel::BuddyAllocator::BuddyAllocator()
{
}
kernel::BuddyAllocator::BuddyAllocator(kernel::MemoryMap& memmap,
char* bitmap, size_t blockCount,
size_t treeHeight)
{
this->bitmap = bitmap;
this->blockSize = 4096;
this->blockCount = blockCount;
this->treeHeight = treeHeight;
for(size_t i = 0; i <= treeHeight; i++)
{
for(size_t j = 0; j < (blockCount >> i); j++)
{
reserveNode(i, j);
}
}
physaddr_t location = 0x100000;
for(size_t i = 0; i < memmap.size() && memmap[i].getSize() > 0; i++)
{
if(memmap[i].getType() != kernel::MemoryMap::AVAILABLE)
continue;
if(memmap[i].getLocation() > location)
location = roundUp(memmap[i].getLocation(), 4096);
while(memmap[i].contains(location, 4096))
{
freeNode(0, location / 4096);
if(isFree(0, getBuddy(location / 4096)))
merge(0, location / 4096);
location += 4096;
}
}
}
kernel::BuddyAllocator::BuddyAllocator(char* bitmap, size_t blockSize,
size_t blockCount, size_t treeHeight)
{
this->bitmap = bitmap;
this->blockSize = blockSize;
this->blockCount = blockCount;
this->treeHeight = treeHeight;
for(size_t i = 0; i <= treeHeight; i++)
{
for(size_t j = 0; j < (blockCount >> i); j++)
{
if(i < treeHeight)
reserveNode(i, j);
else
freeNode(i, j);
}
}
}
physaddr_t kernel::BuddyAllocator::allocate(size_t size)
{
size_t height = ilog2(roundUp(size, blockSize) / blockSize, true);
if(height > treeHeight) // Requested block size is greater than maximum
{
return NULL;
}
else
{
size_t index = findFreeBlock(height);
if(index == INVALID) // Failed to find a big enough free block; out of memory
{
return NULL;
}
else
{
reserveNode(height, index);
return nodeToAddress(height, index);
}
}
}
void kernel::BuddyAllocator::free(physaddr_t location, size_t size)
{
size_t height = ilog2(roundUp(size, blockSize) / blockSize, true);
if(height <= treeHeight)
{
size_t index = addressToNode(height, location);
freeNode(height, index);
if(isFree(height, getBuddy(index)))
{
merge(height, index);
}
}
}
size_t kernel::BuddyAllocator::freeBlocks() const
{
size_t count = 0;
for(size_t j = 0; j < blockCount; j++)
{
if(isFree(0, j))
{
count++;
}
}
return count;
}
size_t kernel::BuddyAllocator::maxAllocationSize() const
{
for(size_t i = treeHeight; i >= 0; i--)
{
for(size_t j = 0; j < (blockCount >> i); j++)
{
if(isFree(i, j))
{
return 1 << i;
}
}
}
return 0;
}
size_t kernel::BuddyAllocator::getBlockSize() const
{
return blockSize;
}
size_t kernel::BuddyAllocator::getMemorySize() const
{
return blockCount;
}
size_t kernel::BuddyAllocator::findFreeBlock(size_t height)
{
for(size_t i = 0; i < (blockCount >> height); i++)
{
if(isFree(height, i))
{
return i;
}
}
if(height < treeHeight)
{
size_t parentIndex = findFreeBlock(height + 1);
if(parentIndex != INVALID)
{
return split(height + 1, parentIndex);
}
}
return INVALID;
}
size_t kernel::BuddyAllocator::split(size_t height, size_t index)
{
if(height > 0 && isFree(height, index))
{
reserveNode(height, index);
freeNode(height - 1, getChild(index));
freeNode(height - 1, getBuddy(getChild(index)));
return getChild(index);
}
else
{
return INVALID;
}
}
size_t kernel::BuddyAllocator::merge(size_t height, size_t index)
{
if(isFree(height, index) && isFree(height, getBuddy(index)) && height < treeHeight)
{
reserveNode(height, index);
reserveNode(height, getBuddy(index));
freeNode(height + 1, getParent(index));
if((height + 1) < treeHeight)
{
if(isFree(height + 1, getBuddy(getParent(index))))
{
return merge(height + 1, getParent(index));
}
}
return getParent(index);
}
else
{
return INVALID;
}
}
size_t kernel::BuddyAllocator::getBuddy(size_t index)
{
return index ^ 1;
}
size_t kernel::BuddyAllocator::getParent(size_t index)
{
return index / 2;
}
size_t kernel::BuddyAllocator::getChild(size_t index)
{
return index * 2;
}
physaddr_t kernel::BuddyAllocator::nodeToAddress(size_t height, size_t index)
const
{
return index * (blockSize << height);
}
size_t kernel::BuddyAllocator::addressToNode(size_t height,
physaddr_t location) const
{
return location / (blockSize << height);
}
void kernel::BuddyAllocator::reserveNode(size_t height, size_t index)
{
size_t bit = (height == 0) ? 0
: ((blockCount * 2) - (blockCount >> (height - 1)));
bit += index;
bitmap[bit / 8] |= 1 << (bit % 8);
}
void kernel::BuddyAllocator::freeNode(size_t height, size_t index)
{
size_t bit = (height == 0) ? 0
: ((blockCount * 2) - (blockCount >> (height - 1)));
bit += index;
bitmap[bit / 8] &= ~(1 << (bit % 8));
}
bool kernel::BuddyAllocator::isFree(size_t height, size_t index) const
{
size_t bit = (height == 0) ? 0
: ((blockCount * 2) - (blockCount >> (height - 1)));
bit += index;
char data = bitmap[bit / 8] & (1 << (bit % 8));
if(data == 0)
{
return true;
}
else
{
return false;
}
}

94
src/buddyallocator.hpp Executable file
View File

@@ -0,0 +1,94 @@
#ifndef BUDDYALLOCATOR_H_
#define BUDDYALLOCATOR_H_
#include "memoryallocator.hpp"
#include "memorymap.hpp"
namespace kernel
{
class BuddyAllocator : public MemoryAllocator
{
public:
BuddyAllocator();
BuddyAllocator(MemoryMap& memmap, char* bitmap, size_t blockCount,
size_t treeHeight);
BuddyAllocator(char* bitmap, size_t blockSize, size_t blockCount,
size_t treeHeight);
/**
* Allocate a block of memory containing at least 'size' bytes.
* Rounds up to the nearest power of 2 times the size of a block.
*/
virtual physaddr_t allocate(size_t size);
/**
* Free the region of memory starting at 'location' and containing
* 'size' bytes.
*/
virtual void free(physaddr_t location, size_t size);
/**
* @returns the total number of free blocks of memory.
*/
virtual size_t freeBlocks() const;
/**
* @returns the size in blocks of the largest possible allocation that
* will not fail due to lack of memory.
*/
virtual size_t maxAllocationSize() const;
/**
* @returns the size in bytes of a single block.
*/
virtual size_t getBlockSize() const;
/**
* @returns the total number of blocks managed by this memory
* allocator.
*/
virtual size_t getMemorySize() const;
private:
static const size_t INVALID = (size_t) -1;
char* bitmap;
size_t blockSize;
size_t blockCount;
size_t treeHeight;
size_t findFreeBlock(size_t height);
size_t split(size_t height, size_t index);
size_t merge(size_t height, size_t index);
size_t getBuddy(size_t index);
size_t getParent(size_t index);
size_t getChild(size_t index);
physaddr_t nodeToAddress(size_t height, size_t index) const;
size_t addressToNode(size_t height, physaddr_t location) const;
void reserveNode(size_t height, size_t index);
void freeNode(size_t height, size_t index);
bool isFree(size_t height, size_t index) const;
};
}
#endif

0
src/cstring.cpp Normal file → Executable file
View File

0
src/cstring.h Normal file → Executable file
View File

190
src/entry.S Normal file → Executable file
View File

@@ -1,6 +1,28 @@
.section .multiboot .section .multiboot
.include "multiboot2header.S" .include "multiboot2header.S"
.section .rodata
gdt:
.long 0, 0
.short 0xFFFF
.short 0x0000
.short 0x9A00
.short 0x00CF
.short 0xFFFF
.short 0x0000
.short 0x9200
.short 0x00CF
gdt_info:
.short 23
.long gdt
.align 16
idt_info:
.short idt_end - idt - 1
.long idt
.section .bss .section .bss
.align 16 .align 16
@@ -14,7 +36,25 @@ _tempPgDir:
_tempIdentityMap: _tempIdentityMap:
.skip 4096 .skip 4096
_tempPgTable: _tempPgTable:
.skip 4096 .skip 8192
_bootCmdLine:
.skip 64
.align 64
.global system_info
system_info:
.skip 16
.align 64
.global memory_map
memory_map:
.skip 16 * 16
.global idt
idt:
.skip 8 * 256
idt_end:
.section .text .section .text
.global _start .global _start
@@ -25,42 +65,172 @@ _start:
movb $64, 0xB8000 movb $64, 0xB8000
mov $system_info, %edi
sub $BASE_DIFF, %edi
add $8, %ebx
switch: mov (%ebx), %eax
cmp $0, %eax
je s_end
cmp $1, %eax
je tag_1
cmp $4, %eax
je tag_4
cmp $6, %eax
je tag_6
cmp $21, %eax
je tag_21
jmp def
# Boot command line
tag_1: mov 4(%ebx), %ecx
sub $8, %ecx
mov %ebx, %esi
add $8, %esi
mov $_bootCmdLine, %edi
sub $BASE_DIFF, %edi
rep movsb
mov $system_info, %edi
sub $BASE_DIFF, %edi
jmp def
# Basic memory info
tag_4: mov 8(%ebx), %eax
mov %eax, (%edi)
mov 12(%ebx), %eax
mov %eax, 4(%edi)
jmp def
# Memory map
tag_6: mov $memory_map, %esi
sub $BASE_DIFF, %esi # set esi to point to the table in the kernel image
mov 4(%ebx), %ecx
sub $16, %ecx # set ecx to store the size of the table provided by the bootloader
mov 8(%ebx), %edx # set edx to store the size of each table entry
add $16, %ebx # move ebx up to the first entry
1: mov (%ebx), %eax
mov %eax, (%esi) # save the address of that region in memory
mov 8(%ebx), %eax
mov %eax, 4(%esi) # save the size of that region in memory
mov 16(%ebx), %eax
mov %eax, 8(%esi) # save the type of memory in that region
add $12, %esi # move esi to the next entry in the kernel's array
add %edx, %ebx # move ebx to the next entry in the bootloader's array
sub %edx, %ecx # subtract the size of an entry from ecx.
jnz 1b # loop if there are entries left
mov $0, %eax
mov %eax, (%esi)
mov %eax, 4(%esi)
mov %eax, 8(%esi)
jmp switch
# Program image location
tag_21: mov 8(%ebx), %eax
mov %eax, 8(%edi)
jmp def
def: mov 4(%ebx), %eax
add $7, %eax
and $0xFFFFFFF8, %eax
add %eax, %ebx
jmp switch
s_end:
movb $64, 0xB8002
mov $0, %ecx mov $0, %ecx
1: mov %ecx, %eax 1:
# Generate a page table entry pointing to a page in the kernel binary
mov %ecx, %eax
mov $4096, %edx mov $4096, %edx
mul %edx mul %edx
add $PHYSICAL_BASE, %eax
or $3, %eax or $3, %eax
# Load the address of the temporary page table and translate it to a physical address
mov $_tempPgTable, %edi mov $_tempPgTable, %edi
sub $BASE_DIFF, %edi
# Save the PTE into an entry in the temporary page table
mov %eax, (%edi, %ecx, 4) mov %eax, (%edi, %ecx, 4)
# Load the address of the identity map and translate it to a physical address
mov $_tempIdentityMap, %edi mov $_tempIdentityMap, %edi
mov %eax, 1024(%edi, %ecx, 4) sub $BASE_DIFF, %edi
# Save the PTE into an entry in the identity map
mov %eax, (%edi, %ecx, 4)
# Increment count and loop
inc %ecx inc %ecx
cmp $IMAGE_SIZE, %ecx mov $IMAGE_SIZE, %edx
add $256, %edx
cmp %edx, %ecx
jne 1b jne 1b
# Load the physical address of the identity map, and generate a PDE
mov $_tempIdentityMap, %eax mov $_tempIdentityMap, %eax
sub $BASE_DIFF, %eax
or $3, %eax or $3, %eax
mov %eax, (_tempPgDir)
# Load the physical address of the page directory
mov $_tempPgDir, %edi
sub $BASE_DIFF, %edi
# Save the PDE to the first element in the page directory
mov %eax, (%edi)
# Load the physical address of the temporary page table, and generate a PDE
mov $_tempPgTable, %eax mov $_tempPgTable, %eax
sub $BASE_DIFF, %eax
or $3, %eax or $3, %eax
mov %eax, (_tempPgDir + 3072)
mov $_tempPgDir, %eax # Save the PDE to the entry corresponding to 0xC0000000
mov %eax, %cr3 mov %eax, 3072(%edi)
# Set the last entry in the page directory to point to the page directory itself
mov %edi, %eax
or $3, %eax
mov %eax, 4092(%edi)
# Load the physical address of the page directory into CR3
mov $_tempPgDir, %edi
sub $BASE_DIFF, %edi
mov %edi, %cr3
# Enable paging
mov %cr0, %eax mov %cr0, %eax
or $0x80010000, %eax or $0x80010000, %eax
mov %eax, %cr0 mov %eax, %cr0
# Jump into mapped kernel binary
lea 2f, %eax lea 2f, %eax
jmp *%eax jmp *%eax
2: movl $0, (_tempIdentityMap) 2:
# Delete PDE corresponding to identity map. We shouldn't need it anymore.
movl $0, (_tempIdentityMap)
# Reload page tables
mov %cr3, %eax mov %cr3, %eax
mov %eax, %cr3 mov %eax, %cr3
# Initialize stack
mov $stackTop, %esp mov $stackTop, %esp
lgdt gdt_info
lidt idt_info
jmp $8, $.ldcs
.ldcs:
mov $16, %ax
mov %ax, %ds
mov %ax, %es
mov %ax, %gs
mov %ax, %fs
mov %ax, %ss
mov $_bootCmdLine, %eax
push %eax
# Call main function
call main call main
_err: _err:

View File

@@ -1,33 +0,0 @@
/*
* Error.cpp
*
* Created on: May 23, 2019
* Author: nathan
*/
#include "error.h"
namespace qkernel {
Error lastError;
Error::Error()
: errorType(ErrorType::none), message("") {}
Error::Error(ErrorType errorType)
: errorType(errorType), message("") {}
Error::Error(ErrorType errorType, const char* message)
: errorType(errorType), message(message) {}
ErrorType Error::getType()
{
return errorType;
}
const char* Error::getMessage()
{
return message;
}
} /* namespace qkernel */

View File

@@ -1,40 +0,0 @@
/*
* Error.h
*
* Created on: May 23, 2019
* Author: nathan
*/
#ifndef SRC_ERROR_H_
#define SRC_ERROR_H_
#include "errortype.h"
namespace qkernel {
class Error {
public:
Error();
Error(ErrorType errorType);
Error(ErrorType errorType, const char* message);
ErrorType getType();
const char* getMessage();
private:
ErrorType errorType;
const char* message;
};
extern Error lastError;
} /* namespace qkernel */
#endif /* SRC_ERROR_H_ */

View File

@@ -1,22 +0,0 @@
/*
* ErrorType.h
*
* Created on: May 23, 2019
* Author: nathan
*/
#ifndef SRC_ERRORTYPE_H_
#define SRC_ERRORTYPE_H_
enum class ErrorType
{
none,
outOfBounds,
illegalState,
outOfMemory,
invalidArgument
};
#endif /* SRC_ERRORTYPE_H_ */

9
src/interrupts/Makefile Normal file
View File

@@ -0,0 +1,9 @@
objs = x86/inthandlers.o x86/interruptdescriptor.o x86/idt.o x86/interrupts.o
archive = libinterrupts.a
$(archive): $(objs)
i686-elf-ar rcs $@ $^
.PHONY: clean
clean:
rm -f $(archive) $(objs)

View File

@@ -0,0 +1,19 @@
#ifndef INTERRUPTS_H
#define INTERRUPTS_H
namespace kernel
{
class Interrupts
{
public:
Interrupts();
void enable();
void disable();
};
}
#endif

21
src/interrupts/x86/idt.S Normal file
View File

@@ -0,0 +1,21 @@
.section .bss
.align 8
.global idt
idt:
.skip 8 * 256
idt_end:
.section .rodata
.idt_info:
.short idt_end - idt - 1
.long idt
.section .text
.global _lidt
.type _lidt, @function
_lidt:
ret

View File

@@ -0,0 +1,10 @@
#ifndef IDT_H
#define IDT_H
#include "interruptdescriptor.hpp"
extern kernel::InterruptDescriptor idt[256];
extern "C" void _lidt();
#endif

View File

@@ -0,0 +1,62 @@
#include "interruptdescriptor.hpp"
kernel::InterruptDescriptor::InterruptDescriptor()
{
this->m_offset1 = 0;
this->m_selector = 0;
this->m_zero = 0;
this->m_type = 0;
this->m_storage = 0;
this->m_dpl = 0;
this->m_present = 0;
this->m_offset2 = 0;
}
kernel::InterruptDescriptor::InterruptDescriptor(void* handler, Type type, unsigned int dpl)
{
uint32_t offset = (uint32_t) handler;
this->m_offset1 = (uint16_t) offset;
this->m_selector = 8;
this->m_zero = 0;
this->m_type = (uint16_t) type;
this->m_storage = 0;
this->m_dpl = dpl;
this->m_present = 1;
this->m_offset2 = offset >> 16;
}
bool kernel::InterruptDescriptor::present()
{
return m_present == 1;
}
void kernel::InterruptDescriptor::present(bool present)
{
m_present = present ? 1 : 0;
}
kernel::InterruptDescriptor::Type kernel::InterruptDescriptor::type()
{
return (Type) m_type;
}
void kernel::InterruptDescriptor::type(kernel::InterruptDescriptor::Type type)
{
m_type = (unsigned int) type;
}
unsigned int kernel::InterruptDescriptor::dpl()
{
return m_dpl;
}
void kernel::InterruptDescriptor::dpl(unsigned int dpl)
{
m_dpl = dpl;
}
void* kernel::InterruptDescriptor::operator=(void* rhs)
{
uint32_t offset = (uint32_t) rhs;
m_offset1 = (uint16_t) offset;
m_offset2 = (offset >> 16);
}

View File

@@ -0,0 +1,55 @@
#ifndef INTERRUPTDESCRIPTOR_H
#define INTERRUPTDESCRIPTOR_H
#include <stdint.h>
namespace kernel
{
class InterruptDescriptor
{
public:
enum Type
{
TASK32 = 5,
TRAP32 = 15,
INT32 = 14,
TRAP16 = 7,
INT16 = 6
};
InterruptDescriptor();
InterruptDescriptor(void* handler, Type type, unsigned int dpl);
bool present();
void present(bool present);
Type type();
void type(Type type);
unsigned int dpl();
void dpl(unsigned int dpl);
void* operator=(void* rhs);
private:
uint16_t m_offset1;
uint16_t m_selector;
uint16_t m_zero : 8;
uint16_t m_type : 4;
uint16_t m_storage : 1;
uint16_t m_dpl : 2;
uint16_t m_present : 1;
uint16_t m_offset2;
};
}
#endif

View File

@@ -0,0 +1,19 @@
#include "../interrupts.hpp"
#include "idt.hpp"
kernel::Interrupts::Interrupts()
{
// Load interrupt handlers
// Configure PIC
_lidt();
}
inline void kernel::Interrupts::enable()
{
asm("sti");
}
inline void kernel::Interrupts::disable()
{
asm("cli");
}

View File

@@ -0,0 +1,32 @@
#include "inthandlers.hpp"
char* display = (char*) 0xC00B8000;
__attribute__ ((interrupt))
void divisionByZero(void* frame)
{
*display = 'z';
display += 2;
}
__attribute__ ((interrupt))
void gpFaultHandler(void* frame, unsigned int error)
{
*display = 'a';
asm("hlt");
}
__attribute__ ((interrupt))
void pageFaultHandler(void* frame, unsigned int error)
{
*display = '0';
//asm("hlt");
}
__attribute__ ((interrupt))
void doubleFaultHandler(void* frame, unsigned int error)
{
*display = '#';
//asm("hlt");
}

View File

@@ -0,0 +1,16 @@
#ifndef INTHANDLERS_H
#define INTHANDLERS_H
__attribute__ ((interrupt))
void divisionByZero(void* frame);
__attribute__ ((interrupt))
void gpFaultHandler(void* frame, unsigned int error);
__attribute__ ((interrupt))
void pageFaultHandler(void* frame, unsigned int error);
__attribute__ ((interrupt))
void doubleFaultHandler(void* frame, unsigned int error);
#endif

36
src/linker.ld Executable file
View File

@@ -0,0 +1,36 @@
ENTRY(_start)
SECTIONS
{
. = 0xC0100000;
VIRTUAL_BASE = .;
PHYSICAL_BASE = 0x100000;
BASE_DIFF = VIRTUAL_BASE - PHYSICAL_BASE;
.text BLOCK(4K) : ALIGN(4K)
{
*(.multiboot)
*(.text)
}
.rodata BLOCK(4K) : ALIGN(4K)
{
*(.rodata)
}
.data BLOCK(4K) : ALIGN(4K)
{
*(.data)
}
.bss BLOCK(4K) : ALIGN(4K)
{
*(COMMON)
*(.bss)
}
LOAD_START = ADDR(.text) - (VIRTUAL_BASE - PHYSICAL_BASE);
LOAD_END = ADDR(.data) + SIZEOF(.data) - (VIRTUAL_BASE - PHYSICAL_BASE);
BSS_END = ADDR(.bss) + SIZEOF(.bss) - (VIRTUAL_BASE - PHYSICAL_BASE);
IMAGE_SIZE = ((BSS_END - LOAD_START) + (4096 - ((BSS_END - LOAD_START) % 4096))) / 4096;
}

0
src/math.cpp Normal file → Executable file
View File

0
src/math.h Normal file → Executable file
View File

55
src/memoryallocator.hpp Executable file
View File

@@ -0,0 +1,55 @@
#ifndef __MEMORYALLOCATOR_H_
#define __MEMORYALLOCATOR_H_
#include <stddef.h>
#include "systypes.hpp"
namespace kernel
{
/**
* Interface for a dymanic memory allocator.
*/
class MemoryAllocator
{
public:
/**
* Allocate a block of memory containing 'size' bytes. May round up
* depending on the implementation.
*/
virtual physaddr_t allocate(size_t size) = 0;
/**
* Free the region of memory starting at 'location' and containing
* 'size' bytes.
*/
virtual void free(physaddr_t location, size_t size) = 0;
/**
* @returns the total number of free blocks of memory.
*/
virtual size_t freeBlocks() const = 0;
/**
* @returns the size in blocks of the largest possible allocation that
* will not fail due to lack of memory.
*/
virtual size_t maxAllocationSize() const = 0;
/**
* @returns the size in bytes of a single block.
*/
virtual size_t getBlockSize() const = 0;
/**
* @returns the total number of blocks managed by this memory
* allocator.
*/
virtual size_t getMemorySize() const = 0;
};
}
#endif

38
src/memorymap.cpp Normal file
View File

@@ -0,0 +1,38 @@
#include "memorymap.hpp"
kernel::MemoryMap::MemoryMap(kernel::MemoryMap::Region* map, size_t entries)
{
this->map = map;
this->entries = entries;
}
kernel::MemoryMap::Region& kernel::MemoryMap::operator[](size_t index)
{
return map[index];
}
size_t kernel::MemoryMap::size()
{
return entries;
}
physaddr_t kernel::MemoryMap::Region::getLocation()
{
return location;
}
size_t kernel::MemoryMap::Region::getSize()
{
return size;
}
kernel::MemoryMap::Type kernel::MemoryMap::Region::getType()
{
return (Type) type;
}
bool kernel::MemoryMap::Region::contains(physaddr_t location, size_t size)
{
return (location >= this->location) &&
(location + size <= this->location + this->size);
}

61
src/memorymap.hpp Normal file
View File

@@ -0,0 +1,61 @@
#ifndef MEMORYMAP_H
#define MEMORYMAP_H
#include <stdint.h>
#include <stddef.h>
#include "systypes.hpp"
namespace kernel
{
class MemoryMap
{
public:
enum Type
{
AVAILABLE = 1,
ACPI = 3,
DEFECTIVE = 5
};
class Region
{
public:
physaddr_t getLocation();
size_t getSize();
Type getType();
bool contains(physaddr_t location, size_t size);
private:
physaddr_t location;
size_t size;
uint32_t type;
};
MemoryMap(Region* map, size_t entries);
Region& operator[](size_t index);
size_t size();
private:
Region* map;
size_t entries;
};
}
#endif

2
src/multiboot2header.S Normal file → Executable file
View File

@@ -28,7 +28,7 @@
.set tagEntryType, 3 .set tagEntryType, 3
.set tagEntrySize, 12 .set tagEntrySize, 12
.set tagEntryAddress, _start - (0xC0000000 - 0x100000) .set tagEntryAddress, _start - (0xC0100000 - 0x100000)
.set tagModuleAlignType, 6 .set tagModuleAlignType, 6
.set tagModuleAlignSize, 8 .set tagModuleAlignSize, 8

148
src/pagetableentry.cpp Normal file → Executable file
View File

@@ -5,9 +5,9 @@
* Author: nathan * Author: nathan
*/ */
#include "pagetableentry.h" #include "pagetableentry.hpp"
namespace qkernel { namespace kernel {
static_assert(sizeof(PageTableEntry) == 4, "PTE structure is the wrong size!"); static_assert(sizeof(PageTableEntry) == 4, "PTE structure is the wrong size!");
@@ -26,102 +26,108 @@ PageTableEntry::PageTableEntry() {
this->physicalAddress = 0; this->physicalAddress = 0;
} }
uint32_t PageTableEntry::getAccessed() const { bool PageTableEntry::getAccessed() const {
return accessed; return accessed == 1;
} }
uint32_t PageTableEntry::getCacheDisable() const { bool PageTableEntry::getCacheDisable() const
return cacheDisable;
}
void PageTableEntry::setCacheDisable(uint32_t cacheDisable)
{ {
this->cacheDisable = cacheDisable; return cacheDisable == 1;
} }
uint32_t PageTableEntry::getDirty() const { void PageTableEntry::setCacheDisable(bool cacheDisable)
return dirty;
}
uint32_t PageTableEntry::getGlobal() const {
return global;
}
void PageTableEntry::setGlobal(uint32_t global)
{ {
this->global = global; this->cacheDisable = cacheDisable ? 1 : 0;
} }
uint32_t PageTableEntry::getPat() const { bool PageTableEntry::getDirty() const
return pat;
}
void PageTableEntry::setPat(uint32_t pat)
{ {
this->pat = pat; return dirty == 1;
} }
uint32_t PageTableEntry::getPhysicalAddress() const { bool PageTableEntry::getGlobal() const
uint32_t physicalAddress = this->physicalAddress; {
return global == 1;
}
void PageTableEntry::setGlobal(bool global)
{
this->global = global ? 1 : 0;
}
bool PageTableEntry::getPat() const
{
return pat == 1;
}
void PageTableEntry::setPat(bool pat)
{
this->pat = pat ? 1 : 0;
}
physaddr_t PageTableEntry::getPhysicalAddress() const {
physaddr_t physicalAddress = this->physicalAddress;
return physicalAddress << 12; return physicalAddress << 12;
} }
uint32_t PageTableEntry::setPhysicalAddress(uint32_t physicalAddress) physaddr_t PageTableEntry::setPhysicalAddress(physaddr_t physicalAddress)
{ {
if(physicalAddress % 4096 == 0) this->physicalAddress = physicalAddress >> 12;
{ return this->physicalAddress << 12;
this->physicalAddress = physicalAddress >> 12;
return this->physicalAddress;
}
else
{
this->physicalAddress = !physicalAddress;
return this->physicalAddress;
}
} }
uint32_t PageTableEntry::getPresent() const { bool PageTableEntry::getPresent() const
return present;
}
void PageTableEntry::setPresent(uint32_t present)
{ {
this->present = present; return present == 1;
} }
uint32_t PageTableEntry::getRw() const { void PageTableEntry::setPresent(bool present)
return rw;
}
void PageTableEntry::setRw(uint32_t rw)
{ {
this->rw = rw; this->present = present ? 1 : 0;
} }
uint32_t PageTableEntry::getUsermode() const { bool PageTableEntry::getRw() const
return usermode;
}
void PageTableEntry::setUsermode(uint32_t usermode)
{ {
this->usermode = usermode; return rw == 1;
} }
uint32_t PageTableEntry::getWriteThrough() const { void PageTableEntry::setRw(bool rw)
return writeThrough;
}
uint32_t PageTableEntry::getShared() const {
return shared;
}
void PageTableEntry::setShared(uint32_t shared) {
this->shared = shared;
}
void PageTableEntry::setWriteThrough(uint32_t writeThrough)
{ {
this->writeThrough = writeThrough; this->rw = rw ? 1 : 0;
}
bool PageTableEntry::getUsermode() const
{
return usermode == 1;
}
void PageTableEntry::setUsermode(bool usermode)
{
this->usermode = usermode ? 1 : 0;
}
bool PageTableEntry::getWriteThrough() const {
return writeThrough == 1;
}
bool PageTableEntry::getShared() const
{
return shared == 1;
}
void PageTableEntry::setShared(bool shared)
{
this->shared = shared ? 1 : 0;
}
void PageTableEntry::setWriteThrough(bool writeThrough)
{
this->writeThrough = writeThrough ? 1 : 0;
}
physaddr_t PageTableEntry::operator=(physaddr_t rhs)
{
return setPhysicalAddress(rhs);
} }
} /* namespace qkernel */ } /* namespace qkernel */

View File

@@ -1,56 +0,0 @@
/*
* PageTableEntry.h
*
* Created on: May 22, 2019
* Author: nathan
*/
#ifndef SRC_PAGETABLEENTRY_H_
#define SRC_PAGETABLEENTRY_H_
#include <stdint.h>
namespace qkernel {
class PageTableEntry {
public:
PageTableEntry();
uint32_t getAccessed() const;
uint32_t getCacheDisable() const;
void setCacheDisable(uint32_t cacheDisable);
uint32_t getDirty() const;
uint32_t getGlobal() const;
void setGlobal(uint32_t global);
uint32_t getPat() const;
void setPat(uint32_t pat);
uint32_t getPhysicalAddress() const;
uint32_t setPhysicalAddress(uint32_t physicalAddress);
uint32_t getPresent() const;
void setPresent(uint32_t present);
uint32_t getRw() const;
void setRw(uint32_t rw);
uint32_t getShared() const;
void setShared(uint32_t shared);
uint32_t getUsermode() const;
void setUsermode(uint32_t usermode);
uint32_t getWriteThrough() const;
void setWriteThrough(uint32_t writeThrough);
private:
uint32_t present : 1;
uint32_t rw : 1;
uint32_t usermode : 1;
uint32_t writeThrough : 1;
uint32_t cacheDisable : 1;
uint32_t accessed : 1;
uint32_t dirty : 1;
uint32_t pat : 1;
uint32_t global : 1;
uint32_t shared : 1;
uint32_t ignored : 2;
uint32_t physicalAddress : 20;
};
} /* namespace qkernel */
#endif /* SRC_PAGETABLEENTRY_H_ */

58
src/pagetableentry.hpp Executable file
View File

@@ -0,0 +1,58 @@
/*
* PageTableEntry.h
*
* Created on: May 22, 2019
* Author: nathan
*/
#ifndef SRC_PAGETABLEENTRY_H_
#define SRC_PAGETABLEENTRY_H_
#include <stdint.h>
#include "systypes.hpp"
namespace kernel {
class PageTableEntry {
public:
PageTableEntry();
bool getAccessed() const;
bool getCacheDisable() const;
void setCacheDisable(bool cacheDisable);
bool getDirty() const;
bool getGlobal() const;
void setGlobal(bool global);
bool getPat() const;
void setPat(bool pat);
physaddr_t getPhysicalAddress() const;
physaddr_t setPhysicalAddress(physaddr_t physicalAddress);
bool getPresent() const;
void setPresent(bool present);
bool getRw() const;
void setRw(bool rw);
bool getShared() const;
void setShared(bool shared);
bool getUsermode() const;
void setUsermode(bool usermode);
bool getWriteThrough() const;
void setWriteThrough(bool writeThrough);
physaddr_t operator=(physaddr_t rhs);
private:
uint32_t present : 1;
uint32_t rw : 1;
uint32_t usermode : 1;
uint32_t writeThrough : 1;
uint32_t cacheDisable : 1;
uint32_t accessed : 1;
uint32_t dirty : 1;
uint32_t pat : 1;
uint32_t global : 1;
uint32_t shared : 1;
uint32_t ignored : 2;
uint32_t physicalAddress : 20;
};
} /* namespace qkernel */
#endif /* SRC_PAGETABLEENTRY_H_ */

View File

@@ -1,202 +0,0 @@
/*
* PhysicalMemoryAllocator.cpp
*
* Created on: May 23, 2019
* Author: nathan
*/
#include "physicalmemoryallocator.h"
#include "math.h"
#include "error.h"
namespace qkernel {
void* const PhysicalMemoryAllocator::nullPtr = (void*) -1;
PhysicalMemoryAllocator::PhysicalMemoryAllocator()
{
for(size_t i = 0; i <= treeHeight; i++)
{
memoryMaps[i] = Bitmap<treeLeaves>(!available);
}
memoryMaps[treeHeight][0] = available;
}
PhysicalMemoryAllocator::~PhysicalMemoryAllocator()
{
// TODO Auto-generated destructor stub
}
void* PhysicalMemoryAllocator::allocate(uint32_t pages)
{
uint32_t height = ilog2(pages, true);
if(height >= treeHeight) // We can't allocate the whole address space at once!
{
return (void*) nullPtr;
}
uint32_t index = findFreeBlock(height);
if(index != nullIndex)
{
memoryMaps[height][index] = !available;
return nodeToAddress(height, index);
}
else
{
return nullPtr;
}
}
void PhysicalMemoryAllocator::free(void* location, uint32_t pages)
{
uint32_t height = ilog2(pages, true);
if(height >= treeHeight || reinterpret_cast<uint32_t>(location) % (4096 * pages) != 0) // We can't free the whole address space at once!
{
return;
}
uint32_t index = addressToNode(height, location);
memoryMaps[height][index] = available;
if(memoryMaps[height][getBuddy(index)] == available)
{
merge(height, index);
}
}
uint32_t PhysicalMemoryAllocator::totalFreePages()
{
uint32_t count = 0;
for(size_t i = 0; i <= treeHeight; i++)
{
count += (1 << i) * memoryMaps[i].count();
}
return count;
}
uint32_t PhysicalMemoryAllocator::largestFreeBlock()
{
for(size_t i = treeHeight; i >= 0; i--)
{
if(memoryMaps[i].any())
{
return 1 << i;
}
}
}
uint32_t PhysicalMemoryAllocator::findFreeBlock(uint32_t height)
{
if(memoryMaps[height].none())
{
if(height == treeHeight)
{
lastError = Error(ErrorType::outOfMemory, "Out of memory");
return nullIndex;
}
else
{
uint32_t parentIndex = findFreeBlock(height + 1);
if(parentIndex == (uint32_t) -1)
{
lastError = Error(ErrorType::outOfMemory, "Out of memory");
return nullIndex;
}
split(height + 1, parentIndex);
}
}
for(size_t index = 0; index < nodesAtHeight(height); index++)
{
if(memoryMaps[height][index] == available)
{
return index;
}
}
lastError = Error(ErrorType::illegalState, "There were still no free blocks after splitting larger ones!");
return nullIndex;
}
uint32_t PhysicalMemoryAllocator::merge(uint32_t height, uint32_t index)
{
if(height == treeHeight)
{
lastError = Error(ErrorType::outOfBounds, "Attempted to merge root node");
return nullIndex;
}
if(memoryMaps[height][index] == 0 && memoryMaps[height][getBuddy(index)] == 0)
{
memoryMaps[height][index] = !available;
memoryMaps[height][getBuddy(index)] = !available;
memoryMaps[height + 1][getParent(index)] = available;
if(height + 1 < 20)
{
if(memoryMaps[height + 1][getBuddy(getParent(index))] == available)
{
return merge(height + 1, getParent(index));
}
}
return getParent(index);
}
else
{
lastError = Error(ErrorType::invalidArgument, "Attempted to merge a node that is in use");
return nullIndex;
}
}
uint32_t PhysicalMemoryAllocator::split(uint32_t height, uint32_t index)
{
if(height == 0)
{
lastError = Error(ErrorType::outOfBounds, "Attempted to split leaf node");
return nullIndex;
}
if(memoryMaps[height][index] == available)
{
memoryMaps[height][index] = !available;
memoryMaps[height - 1][getChild(index)] = available;
memoryMaps[height - 1][getBuddy(getChild(index))] = available;
return getChild(index);
}
else
{
lastError = Error(ErrorType::invalidArgument, "Attempted to split node currently in use");
return nullIndex;
}
}
uint32_t PhysicalMemoryAllocator::getBuddy(uint32_t index)
{
return index ^ 1;
}
uint32_t PhysicalMemoryAllocator::getParent(uint32_t index)
{
return (index - index % 2) / 2;
}
uint32_t PhysicalMemoryAllocator::getChild(uint32_t index)
{
return index * 2;
}
void* PhysicalMemoryAllocator::nodeToAddress(uint32_t height, uint32_t index)
{
return reinterpret_cast<void*>(index * 4096 * (1 << height));
}
uint32_t PhysicalMemoryAllocator::nodesAtHeight(uint32_t height)
{
return treeLeaves / (1 << height);
}
uint32_t PhysicalMemoryAllocator::addressToNode(uint32_t height,
void* address)
{
return reinterpret_cast<uint32_t>(address) / (4096 * (1 << height));
}
} /* namespace qkernel */

View File

@@ -1,90 +0,0 @@
/*
* PhysicalMemoryAllocator.h
*
* Created on: May 23, 2019
* Author: nathan
*/
#ifndef PHYSICALMEMORYALLOCATOR_H_
#define PHYSICALMEMORYALLOCATOR_H_
#include <stdint.h>
#include <stddef.h>
#include "bitmap.h"
namespace qkernel {
class PhysicalMemoryAllocator {
public:
static void* const nullPtr;
PhysicalMemoryAllocator();
~PhysicalMemoryAllocator();
void* allocate(uint32_t pages);
void free(void* location, uint32_t pages);
uint32_t totalFreePages();
uint32_t largestFreeBlock();
private:
static const uint32_t nullIndex = (uint32_t) -1;
static const bool available = true;
static const size_t treeHeight = 20;
static const size_t treeLeaves = 1024 * 1024;
Bitmap<treeLeaves> memoryMaps[treeHeight + 1];
/**
* Searches nodes of the given height for an available block. If none is
* present, recursively splits higher nodes until one is.
*
* @param height The height of the desired node.
* @returns the index of the located node
*/
uint32_t findFreeBlock(uint32_t height);
/**
* Merges a pair of buddies that have both become available. Recurses if
* the buddy of the new block is available.
*
* @param height The height of the blocks to merge.
* @param index The index of one of the buddies to be merged.
*/
uint32_t merge(uint32_t height, uint32_t index);
/**
* Splits a block into a pair of buddies, making the original unavailable.
*
* @param height The height of the block to split.
* @param index The index of the block to split.
*
* @returns the index of the first of the pair of new blocks.
*/
uint32_t split(uint32_t height, uint32_t index);
uint32_t getBuddy(uint32_t index);
uint32_t getParent(uint32_t index);
uint32_t getChild(uint32_t index);
uint32_t nodesAtHeight(uint32_t height);
void* nodeToAddress(uint32_t height, uint32_t index);
uint32_t addressToNode(uint32_t height, void* address);
};
} /* namespace qkernel */
#endif /* PHYSICALMEMORYALLOCATOR_H_ */

13
src/pio.S Normal file
View File

@@ -0,0 +1,13 @@
.global outb
outb:
mov 4(%esp), %dx
mov 8(%esp), %al
out %al, %dx
ret
.global inb
inb:
mov 4(%esp), %dx
xor %eax, %eax
in %dx, %al
ret

8
src/pio.hpp Normal file
View File

@@ -0,0 +1,8 @@
#ifndef PIO_H
#define PIO_H
extern "C" void outb(short port, char data);
extern "C" char inb(short port);
#endif

43
src/quarkkernel.cpp Normal file → Executable file
View File

@@ -1,13 +1,42 @@
#include <stddef.h> #include <stddef.h>
#include <stdint.h> #include <stdint.h>
#if __STDC_HOSTED__ == 1 || __i686__ != 1 #include "systypes.hpp"
#error "ERROR: This program must be compiled for a freestanding environment, and currently only supports the i686 target." #include "systeminfo.hpp"
#endif #include "memorymap.hpp"
#include "buddyallocator.hpp"
#include "addressspace.hpp"
#include "pio.hpp"
#include "tty.h"
void main() using namespace kernel;
extern SystemInfo system_info;
extern MemoryMap::Region memory_map;
extern "C" void __cxa_pure_virtual()
{ {
int x = 2;
x -= 1; }
return;
void main(char* cmdline)
{
TTY tty((char*) 0xC00B8000);
tty << "--Quark Kernel--\n";
tty << "Low memory: \t" << (int) system_info.getLowMemory() << " KiB\n";
tty << "High memory:\t" << (int) system_info.getHighMemory() << " KiB\n";
tty << "Type\t\tLocation\t\tSize\n";
MemoryMap memmap(&memory_map, 16);
for(size_t i = 0; i < memmap.size() && memmap[i].getSize() > 0; i++)
{
tty << (int) memmap[i].getType() << "\t\t\t";
tty << (void*) memmap[i].getLocation() << "\t\t";
tty << (int) memmap[i].getSize() << "\n";
}
BuddyAllocator alloc(memmap, (char*) 0xC0000000, system_info.getHighMemory() / 4 + 256, 6);
AddressSpace vmem(alloc);
vmem.mmap((void*) 0x80000000, 0x10000);
outb(0xa1, 0xff);
outb(0x21, 0xff);
tty << "Nothing left to do. Hanging.\n";
} }

16
src/systeminfo.cpp Normal file
View File

@@ -0,0 +1,16 @@
#include "systeminfo.hpp"
size_t kernel::SystemInfo::getLowMemory()
{
return lowMemory;
}
size_t kernel::SystemInfo::getHighMemory()
{
return highMemory;
}
physaddr_t kernel::SystemInfo::getKernelBase()
{
return kernelBase;
}

33
src/systeminfo.hpp Normal file
View File

@@ -0,0 +1,33 @@
#ifndef SYSTEMINFO_H
#define SYSTEMINFO_H
#include <stddef.h>
#include "systypes.hpp"
namespace kernel
{
class SystemInfo
{
public:
size_t getLowMemory();
size_t getHighMemory();
physaddr_t getKernelBase();
private:
size_t lowMemory;
size_t highMemory;
physaddr_t kernelBase;
};
}
#endif

9
src/systypes.hpp Normal file
View File

@@ -0,0 +1,9 @@
#ifndef SYSTYPES_H
#define SYSTYPES_H
#include <stdint.h>
#include <stddef.h>
typedef uint32_t physaddr_t;
#endif

125
src/tty.cpp Normal file
View File

@@ -0,0 +1,125 @@
#include <stdbool.h>
#include "tty.h"
kernel::TTY::TTY(char* vga)
{
this->vga = vga;
this->cursor = 0;
this->width = 0;
this->base = 10;
}
kernel::TTY& kernel::TTY::operator<<(kernel::TTY::Format fmt)
{
switch(fmt)
{
case Binary:
base = 2;
break;
case Decimal:
base = 10;
break;
case Hex:
base = 16;
break;
}
}
kernel::TTY& kernel::TTY::operator<<(const char* str)
{
return printString(str);
}
kernel::TTY& kernel::TTY::operator<<(unsigned int n)
{
return printNumber(n, base, width);
}
kernel::TTY& kernel::TTY::operator<<(int n)
{
return printNumber((unsigned int) n, base, width);
}
kernel::TTY& kernel::TTY::operator<<(void* n)
{
return printNumber((unsigned int) n, 16, 8);
}
kernel::TTY& kernel::TTY::operator<<(char c)
{
return putChar(c);
}
void kernel::TTY::setWidth(size_t width)
{
this->width = width;
}
size_t kernel::TTY::getWidth()
{
return width;
}
void kernel::TTY::clear()
{
for(int i = 0; i < 80*25; i++)
{
vga[i * 2] = ' ';
}
cursor = 0;
}
kernel::TTY& kernel::TTY::printNumber(unsigned int n, size_t base,
size_t width)
{
const char* digits = "0123456789ABCDEF";
char str[33];
size_t i = 1;
do
{
str[i] = digits[n % base];
n /= base;
i++;
} while(n > 0);
while(i <= width)
{
str[i] = '0';
i++;
}
str[0] = '\0';
for(char* s = str + (i - 1); *s; s--)
{
putChar(*s);
}
return *this;
}
kernel::TTY& kernel::TTY::printString(const char* str)
{
while(*str)
{
putChar(*str);
str++;
}
return *this;
}
kernel::TTY& kernel::TTY::putChar(char c)
{
switch(c)
{
case '\n':
cursor = (cursor + 80) - (cursor % 80);
break;
case '\t':
cursor = (cursor + 4) - (cursor % 4);
break;
case '\r':
cursor -= cursor % 160;
break;
default:
vga[cursor * 2] = c;
cursor++;
}
return *this;
}

60
src/tty.h Normal file
View File

@@ -0,0 +1,60 @@
#ifndef TTY_H_
#define TTY_H_
#include <stddef.h>
namespace kernel
{
class TTY
{
public:
enum Format
{
Binary,
Decimal,
Hex
};
TTY(char* vga);
TTY& operator<<(Format fmt);
TTY& operator<<(const char* str);
TTY& operator<<(unsigned int n);
TTY& operator<<(int n);
TTY& operator<<(void* n);
TTY& operator<<(char c);
void setWidth(size_t width);
size_t getWidth();
void clear();
private:
TTY& printNumber(unsigned int n, size_t base, size_t width);
TTY& printString(const char* str);
TTY& putChar(char c);
char* vga;
int cursor;
size_t width;
size_t base;
};
}
#endif