Rewrote physical memory allocator

The physical memory allocator now uses a buddy allocator instead of a stack.

Also moved some of the platform-independent context code to kernel.c.
This commit is contained in:
2022-08-23 13:00:26 -05:00
parent 54e2beefc1
commit bacedbea86
10 changed files with 314 additions and 156 deletions

View File

@@ -35,8 +35,9 @@ struct boot_info_t
{ {
char *bootloader; char *bootloader;
char *parameters; char *parameters;
size_t module_count; size_t memory_size;
struct memory_map_t map; struct memory_map_t map;
size_t module_count;
struct module_t modules[module_limit]; struct module_t modules[module_limit];
}; };
@@ -94,9 +95,9 @@ unsigned long kernel_current_pid();
struct process_context_t *kernel_current_context(); struct process_context_t *kernel_current_context();
enum error_t kernel_store_active_context(struct process_context_t *context, size_t size); enum error_t kernel_store_active_context(struct process_context_t *context);
enum error_t kernel_spawn_process(void *program_entry, int priority, physaddr_t address_space); unsigned long kernel_spawn_process(void *program_entry, int priority, physaddr_t address_space);
struct process_context_t *kernel_advance_scheduler(); struct process_context_t *kernel_advance_scheduler();
@@ -108,11 +109,11 @@ enum error_t kernel_remove_port(unsigned long id);
unsigned long kernel_get_port_owner(unsigned long id); unsigned long kernel_get_port_owner(unsigned long id);
enum error_t kernel_send_message(int recipient, struct message_t *message); enum error_t kernel_send_message(unsigned long recipient, struct message_t *message);
enum error_t kernel_queue_sender(int recipient); enum error_t kernel_queue_sender(unsigned long recipient);
enum error_t kernel_queue_message(int recipient, struct message_t *message); enum error_t kernel_queue_message(unsigned long recipient, struct message_t *message);
int receive_message(struct message_t *buffer, int flags); int receive_message(struct message_t *buffer, int flags);

View File

@@ -8,10 +8,24 @@
extern const size_t page_size; extern const size_t page_size;
/** /**
* @brief Pop the topmost address from the stack and returns that value. * @brief
* *
* If the stack is empty, this function will instead return a status code. This * @param size
* can be identified by testing the least signifigant bits of the return value. * @return physaddr_t
*/
physaddr_t reserve_region(size_t size);
/**
* @brief
*
* @param location
* @param size
* @return int
*/
int free_region(physaddr_t location, size_t size);
/**
* @brief Reserves a single page and returns its physical address.
* *
* @param stack * @param stack
* @return physaddr_t * @return physaddr_t
@@ -19,9 +33,7 @@ extern const size_t page_size;
physaddr_t reserve_page(); physaddr_t reserve_page();
/** /**
* @brief Pushes `location` onto the stack. * @brief Marks the page at the given location as free.
*
* If there is no room on the stack, the stack will be unaffected.
* *
* @param stack * @param stack
* @param location * @param location
@@ -41,22 +53,25 @@ size_t free_page_count();
* *
* @return void* * @return void*
*/ */
void *page_stack_bottom(); void *page_map_base();
/** /**
* @brief Get the location of the top of the page stack. * @brief Get the location of the top of the page stack.
* *
* @return void* * @return void*
*/ */
void *page_stack_top(); void *page_map_end();
/** /**
* @brief Push all available pages in `map` onto the stack * @brief Constructs the bitmaps used by the physical memory allocator.
* *
* @param stack
* @param map * @param map
* @param base
* @param memory_size
* @param block_size
* @return enum error_t
*/ */
int initialize_page_stack(struct memory_map_t *map, physaddr_t *stack_base); enum error_t initialize_page_map(struct memory_map_t *map, void *base, size_t memory_size, unsigned long block_size);
/** /**
* @brief Create a new top-level page table and map the kernel in it. * @brief Create a new top-level page table and map the kernel in it.

View File

@@ -1,19 +1,35 @@
#pragma once #ifndef _QUARK_CONTEXT_H
#define _QUARK_CONTEXT_H
struct process_context_t; #include <stdint.h>
#if defined __i386__ || defined __x86_64__
#define DEFAULT_FLAGS 0x3200
#endif
/** /**
* @brief Allocates a new process context and initializes it with the given * @brief Stores the context of a particular process. The contents of this
* program counter. * struct are platform-specific.
* *
* @param task_entry
* @return void*
*/ */
void *initialize_context(void *pc); struct process_context_t
{
void destroy_context(void *ctx); #if defined __i386__
uint32_t gp_registers[8];
uint32_t ss;
uint32_t cs;
uint32_t eip;
uint32_t flags;
#elif defined __x86_64__
uint64_t gp_registers[16];
uint64_t ss;
uint64_t cs;
uint64_t rip;
uint64_t flags;
#endif
void save_context(struct process_context_t *context); };
void load_context(struct process_context_t *context); void load_context(struct process_context_t *context);
@@ -24,3 +40,5 @@ void set_context_stack(struct process_context_t *context, void *stack);
void set_context_flags(struct process_context_t *context, unsigned long flags); void set_context_flags(struct process_context_t *context, unsigned long flags);
void set_context_return(struct process_context_t *context, unsigned long value); void set_context_return(struct process_context_t *context, unsigned long value);
#endif

View File

@@ -1,21 +0,0 @@
#pragma once
#include <stdint.h>
#define PCB_LOCATION 0x800
struct process_context_t
{
uint32_t eax;
uint32_t ebx;
uint32_t ecx;
uint32_t edx;
uint32_t edi;
uint32_t esi;
uint32_t ebp;
uint32_t ss;
uint32_t esp;
uint32_t cs;
uint32_t eip;
uint32_t flags;
};

View File

@@ -18,10 +18,11 @@ struct kernel_t kernel;
void kernel_initialize(struct boot_info_t *boot_info) void kernel_initialize(struct boot_info_t *boot_info)
{ {
insert_region(&boot_info->map, (physaddr_t)&_kernel_pstart, (physaddr_t)&_kernel_pend - (physaddr_t)&_kernel_pstart, M_UNAVAILABLE); insert_region(&boot_info->map, (physaddr_t)&_kernel_pstart, (physaddr_t)&_kernel_pend - (physaddr_t)&_kernel_pstart, M_UNAVAILABLE);
initialize_page_stack(&boot_info->map, (physaddr_t*)&_kernel_end); initialize_page_map(&boot_info->map, (physaddr_t*)&_kernel_end, boot_info->memory_size, page_size);
kminit(&_kernel_start, page_stack_top(), 0xFFC00000 - (size_t)&_kernel_start, 64); kminit(&_kernel_start, page_map_end(), 0xFFC00000 - (size_t)&_kernel_start, 64);
initialize_screen(); initialize_screen();
printf("***%s***\n", PACKAGE_STRING); printf("***%s***\n", PACKAGE_STRING);
printf("Total memory: %08x\n", boot_info->memory_size);
printf("Type\t\tLocation\t\tSize\n"); printf("Type\t\tLocation\t\tSize\n");
for (size_t i = 0; i < boot_info->map.size && boot_info->map.array[i].size > 0; i++) for (size_t i = 0; i < boot_info->map.size && boot_info->map.array[i].size > 0; i++)
{ {
@@ -217,14 +218,22 @@ struct process_context_t *kernel_current_context()
} }
} }
enum error_t kernel_spawn_process(void *program_entry, int priority, physaddr_t address_space) unsigned long kernel_spawn_process(void *program_entry, int priority, physaddr_t address_space)
{ {
struct process_t *new_process = (struct process_t*) kmalloc(sizeof(struct process_t)); struct process_t *new_process = (struct process_t*) kmalloc(sizeof(struct process_t));
if(new_process == NULL) if(new_process == NULL)
{ {
return 0; return 0;
} }
struct process_context_t *initial_context = initialize_context(program_entry); struct process_context_t *initial_context = kmalloc(sizeof(struct process_context_t));
if(initial_context == NULL)
{
return 0;
}
memset(initial_context, 0, sizeof(struct process_context_t));
set_context_pc(initial_context, program_entry);
set_context_flags(initial_context, DEFAULT_FLAGS);
set_context_stack(initial_context, NULL);
new_process->priority = priority; new_process->priority = priority;
new_process->pid = kernel.next_pid; new_process->pid = kernel.next_pid;
new_process->page_table = address_space; new_process->page_table = address_space;
@@ -268,16 +277,26 @@ enum error_t kernel_terminate_process(size_t process_id)
} }
kernel.process_table = avl_remove(kernel.process_table, process_id); kernel.process_table = avl_remove(kernel.process_table, process_id);
priorityqueue_remove(&kernel.priority_queue, process); priorityqueue_remove(&kernel.priority_queue, process);
destroy_context(process->ctx); for(struct message_t *msg = queue_get_next(&process->message_queue); msg != NULL; msg = queue_get_next(&process->message_queue))
{
kfree(msg);
}
for(struct process_t *sender = queue_get_next(&process->sending_queue); sender != NULL; sender = queue_get_next(&process->sending_queue))
{
sender->state = PROCESS_ACTIVE;
set_context_return(sender->ctx, EEXITED);
priorityqueue_insert(&kernel.priority_queue, sender, sender->priority);
}
kfree(process->ctx);
kfree(process); kfree(process);
return ENONE; return ENONE;
} }
enum error_t kernel_store_active_context(struct process_context_t *context, size_t size) enum error_t kernel_store_active_context(struct process_context_t *context)
{ {
if(kernel.active_process != NULL && kernel.active_process->ctx != NULL) if(kernel.active_process != NULL && kernel.active_process->ctx != NULL)
{ {
memcpy(kernel.active_process->ctx, context, size); memcpy(kernel.active_process->ctx, context, sizeof(*context));
return ENONE; return ENONE;
} }
else else
@@ -330,7 +349,7 @@ unsigned long kernel_get_port_owner(unsigned long id)
} }
} }
enum error_t kernel_send_message(int recipient, struct message_t *message) enum error_t kernel_send_message(unsigned long recipient, struct message_t *message)
{ {
struct process_t *dest = avl_get(kernel.process_table, recipient); struct process_t *dest = avl_get(kernel.process_table, recipient);
if(dest == NULL) if(dest == NULL)
@@ -358,7 +377,7 @@ enum error_t kernel_send_message(int recipient, struct message_t *message)
} }
} }
enum error_t kernel_queue_sender(int recipient) enum error_t kernel_queue_sender(unsigned long recipient)
{ {
struct process_t *dest = avl_get(kernel.process_table, recipient); struct process_t *dest = avl_get(kernel.process_table, recipient);
if(dest != NULL) if(dest != NULL)
@@ -375,7 +394,7 @@ enum error_t kernel_queue_sender(int recipient)
} }
} }
enum error_t kernel_queue_message(int recipient, struct message_t *message) enum error_t kernel_queue_message(unsigned long recipient, struct message_t *message)
{ {
struct process_t *dest = avl_get(kernel.process_table, recipient); struct process_t *dest = avl_get(kernel.process_table, recipient);
if(dest != NULL) if(dest != NULL)

View File

@@ -1,5 +1,6 @@
#include "mmgr.h" #include "mmgr.h"
#include "string.h" #include "string.h"
#include "math.h"
#include "platform/paging.h" #include "platform/paging.h"
#include "types/status.h" #include "types/status.h"
#include <stdint.h> #include <stdint.h>
@@ -12,11 +13,12 @@
*/ */
struct page_stack_t struct page_stack_t
{ {
/** /**
* @brief The total number of physical pages managed by the system. * @brief The total number of physical pages managed by the system.
* *
*/ */
size_t total_pages; unsigned long total_pages;
/** /**
* @brief Points to the topmost physical address on the stack. * @brief Points to the topmost physical address on the stack.
@@ -39,81 +41,230 @@ struct page_stack_t
} page_stack; } page_stack;
int initialize_page_stack(struct memory_map_t *map, physaddr_t *stack_base) struct page_map_t
{ {
page_stack.base_pointer = stack_base; /**
page_stack.limit_pointer = stack_base; * @brief The underlying bitmap representing the availability of chunks of
page_stack.stack_pointer = stack_base; * physical memory.
page_stack.total_pages = 0; *
for(int i = 0; i < map->size; i++) */
unsigned long *bitmap;
/**
* @brief The size of the bitmap in bytes.
*
*/
unsigned long bitmap_size;
/**
* @brief The size in bytes of the smallest unit of allocation.
*
* This value should either be the size of a page on the host system, or
* possibly some number of pages.
*
*/
unsigned long block_size;
/**
* @brief
*
*/
unsigned long height;
/**
* @brief The number of available blocks of memory.
*
* Due to memory fragmentation, it may not be possible to allocate all
* available memory at once.
*
*/
unsigned long free_block_count;
} page_map;
const int bitmap_word_size = 8 * sizeof(*page_map.bitmap);
int split_block(int index)
{
if(index)
{ {
if(map->array[i].type != M_AVAILABLE) int bitmap_index = index / bitmap_word_size;
{ int bitmap_offset = index % bitmap_word_size;
continue; page_map.bitmap[bitmap_index] &= ~(1 << bitmap_offset);
index *= 2;
bitmap_index = index / bitmap_word_size;
bitmap_offset = index / bitmap_word_size;
page_map.bitmap[bitmap_index] |= 1 << bitmap_offset;
page_map.bitmap[bitmap_index] |= 1 << (bitmap_offset ^ 1);
} }
size_t location = (map->array[i].location + page_size - 1) & ~(page_size - 1); return index;
while(location + page_size <= map->array[i].location + map->array[i].size) }
int find_free_region(int height)
{
if(height > page_map.height || height < 0)
{ {
if(free_page(location) != ENONE) return 0;
}
else if(height <= page_map.height - ilog2(bitmap_word_size))
{
for(int index = (1 << (page_map.height - height)) / bitmap_word_size;
index < (1 << (page_map.height - height + 1)) / bitmap_word_size;
index++)
{
if(page_map.bitmap[index] != 0)
{
return bitmap_word_size * index + __builtin_ctz(page_map.bitmap[index]);
}
}
}
else
{
static const int bitmasks[] = {0x00000002, 0x0000000C, 0x000000F0, 0x0000FF00, 0xFFFF0000};
int depth = page_map.height - height;
if(page_map.bitmap[0] & bitmasks[depth])
{
return __builtin_ctz(page_map.bitmap[0] & bitmasks[depth]);
}
}
return split_block(find_free_region(height + 1));
}
physaddr_t reserve_region(size_t size)
{
int height = llog2(size / page_map.block_size);
int index = find_free_region(height);
if(index)
{
int bitmap_index = index / bitmap_word_size;
int bitmap_offset = index % bitmap_word_size;
page_map.bitmap[bitmap_index] &= ~(1 << bitmap_offset);
return (page_map.block_size << height) * (index - (1 << (page_map.height - height)));
}
else
{ {
return ENOMEM; return ENOMEM;
} }
page_stack.total_pages++; }
location += page_size;
} int free_region(physaddr_t location, size_t size)
{
int height = llog2(size / page_map.block_size);
int index = (location / (page_map.block_size * (1 << height))) + (1 << (page_map.height - height));
int bitmap_index = index / bitmap_word_size;
int bitmap_offset = index % bitmap_word_size;
page_map.bitmap[bitmap_index] |= 1 << bitmap_offset;
while(page_map.bitmap[bitmap_index] & (1 << (bitmap_offset ^ 1)))
{
page_map.bitmap[bitmap_index] &= ~(1 << bitmap_offset);
page_map.bitmap[bitmap_index] &= ~(1 << (bitmap_offset ^ 1));
index /= 2;
bitmap_index = index / bitmap_word_size;
bitmap_offset = index % bitmap_word_size;
page_map.bitmap[bitmap_index] |= 1 << bitmap_offset;
} }
return ENONE; return ENONE;
} }
physaddr_t reserve_page() physaddr_t reserve_page()
{ {
if(page_stack.stack_pointer > page_stack.base_pointer) return reserve_region(page_size);
{
page_stack.stack_pointer--;
physaddr_t frame = *page_stack.stack_pointer;
*page_stack.stack_pointer = (physaddr_t) 0;
return frame;
}
return ENOMEM;
} }
int free_page(physaddr_t location) int free_page(physaddr_t location)
{ {
if(page_stack.stack_pointer < page_stack.limit_pointer) return free_region(location, page_size);
{
*page_stack.stack_pointer = location;
page_stack.stack_pointer++;
return ENONE;
}
else
{
switch(map_page(page_stack.limit_pointer, location, PAGE_RW))
{
case ENOMEM:
return ENOMEM;
case EOUTOFBOUNDS:
return EOUTOFBOUNDS;
case ENONE:
page_stack.limit_pointer += page_size / sizeof(*page_stack.limit_pointer);
return ENONE;
}
return ENOMEM;
}
} }
size_t free_page_count() size_t free_page_count()
{ {
return page_stack.base_pointer - page_stack.stack_pointer; return page_map.free_block_count;
} }
void *page_stack_bottom() void *page_map_base()
{ {
return (void*)page_stack.base_pointer; return (void*)page_map.bitmap;
} }
void *page_stack_top() void *page_map_end()
{ {
return (void*)page_stack.limit_pointer; return (void*)page_map.bitmap + page_map.bitmap_size;
}
enum error_t initialize_page_map(struct memory_map_t *map, void *base, size_t memory_size, unsigned long block_size)
{
// Round memory_size up to nearest power of 2
memory_size = 1 << llog2(memory_size);
page_map.bitmap = (unsigned long*) base;
page_map.bitmap_size = (memory_size / page_size) / 4;
page_map.block_size = block_size;
page_map.height = llog2(memory_size / block_size);
page_map.free_block_count = 0;
int block_log = llog2(block_size);
int pages_mapped = 0;
for(int i = 0; i < map->size; i++)
{
if(map->array[i].type != M_AVAILABLE)
{
continue;
}
physaddr_t location = (map->array[i].location + page_size - 1) & ~(page_size - 1);
physaddr_t region_end = map->array[i].location + map->array[i].size;
while(location + block_size <= region_end)
{
if(pages_mapped < page_map.bitmap_size / page_size)
{
void *page = (void*)page_map.bitmap + pages_mapped * page_size;
for(int level = 0; level < page_table_levels; level++)
{
if(!(get_pte_type(page, level) & PAGE_PRESENT))
{
if(set_pte(page, level, PAGE_PRESENT | PAGE_RW, location))
{
return ENOMEM;
}
else if(level == page_table_levels - 1)
{
pages_mapped++;
}
break;
}
else if(level == page_table_levels - 1)
{
pages_mapped++;
}
}
location += page_size;
continue;
}
int bit_offset = (location / block_size) % bitmap_word_size;
int bitmap_index = (location / block_size) / bitmap_word_size;
size_t chunk_size = (bitmap_word_size - bit_offset) * block_size;
if(bit_offset == 0 && (region_end - location) >= chunk_size)
{
// Set all bits in the word
page_map.bitmap[bitmap_index] = ~0;
}
else if(bit_offset == 0)
{
// Set the first 'count' bits
int count = (region_end - location) >> block_log;
page_map.bitmap[bitmap_index] |= (1 << count) - 1;
}
else if((region_end - location) >= chunk_size)
{
// Set all bits starting at 'bit_offset'
page_map.bitmap[bitmap_index] |= ~((1 << bit_offset) - 1);
}
else
{
// Set all bits starting at 'bit_offset' up to 'count'
int count = (region_end - location) >> block_log;
page_map.bitmap[bitmap_index] |= ((1 << count) - 1) & ~((1 << bit_offset) - 1);
}
location += chunk_size;
}
}
return ENONE;
} }
physaddr_t create_address_space() physaddr_t create_address_space()

View File

@@ -4,54 +4,17 @@
#include "heap.h" #include "heap.h"
#include "string.h" #include "string.h"
#include "system.h" #include "system.h"
#include "x86/processstate.h"
void *initialize_context(void *task_entry)
{
physaddr_t stack_frame = reserve_page();
if(stack_frame % page_size != 0)
{
return NULL;
}
map_page((void*)&_kernel_start - page_size, stack_frame, PAGE_RW | PAGE_USERMODE);
unmap_page((void*)&_kernel_start - (2 * page_size));
struct process_context_t *context = kmalloc(sizeof(struct process_context_t));
if(context != NULL)
{
memset(context, 0, sizeof(struct process_context_t));
uint32_t flags;
asm("pushf; "
"mov (%%esp), %0; "
"popf; "
: "=r"(flags));
context->cs = 0x1B;
context->eip = (uint32_t)task_entry;
context->flags = (flags & ~0xFD) | 0x200;
context->ss = 0x23;
context->esp = &_kernel_start;
context->ebp = &_kernel_start;
}
return (void*)context;
}
void destroy_context(void *ctx)
{
kfree(ctx);
}
void save_context(struct process_context_t *context)
{
kernel_store_active_context(context, sizeof(*context));
}
void set_context_pc(struct process_context_t *context, void *pc) void set_context_pc(struct process_context_t *context, void *pc)
{ {
context->eip = pc; context->eip = pc;
context->cs = 0x1B;
} }
void set_context_stack(struct process_context_t *context, void *stack) void set_context_stack(struct process_context_t *context, void *stack)
{ {
context->esp = stack; context->gp_registers[7] = stack;
context->ss = 0x23;
} }
void set_context_flags(struct process_context_t *context, unsigned long flags) void set_context_flags(struct process_context_t *context, unsigned long flags)
@@ -61,5 +24,5 @@ void set_context_flags(struct process_context_t *context, unsigned long flags)
void set_context_return(struct process_context_t *context, unsigned long value) void set_context_return(struct process_context_t *context, unsigned long value)
{ {
context->eax = value; context->gp_registers[0] = value;
} }

View File

@@ -7,8 +7,8 @@
.type load_context, @function .type load_context, @function
load_context: load_context:
mov 4(%esp), %eax mov 4(%esp), %eax
push 0x1C(%eax)
push 0x20(%eax) push 0x20(%eax)
push 0x1C(%eax)
push 0x2C(%eax) push 0x2C(%eax)
push 0x24(%eax) push 0x24(%eax)
push 0x28(%eax) push 0x28(%eax)
@@ -19,10 +19,11 @@ load_context:
mov 0x10(%eax), %edi mov 0x10(%eax), %edi
mov 0x14(%eax), %esi mov 0x14(%eax), %esi
mov 0x18(%eax), %ebp mov 0x18(%eax), %ebp
mov 0x1C(%eax), %ax mov 0x20(%eax), %ax
mov %ax, %ds mov %ax, %ds
mov %ax, %es mov %ax, %es
mov %ax, %fs mov %ax, %fs
mov %ax, %gs mov %ax, %gs
pop %eax pop %eax
iret iret
.size load_context, . - load_context

View File

@@ -68,6 +68,14 @@ struct multiboot2_memory_map_t
struct multiboot2_map_entry_t entries; struct multiboot2_map_entry_t entries;
}; };
struct multiboot2_memory_info_t
{
uint32_t type;
uint32_t size;
uint32_t low_memory;
uint32_t high_memory;
};
void *read_multiboot_table_entry(struct boot_info_t *boot_info, void *table) void *read_multiboot_table_entry(struct boot_info_t *boot_info, void *table)
{ {
uint32_t *int_table = (uint32_t *)table; uint32_t *int_table = (uint32_t *)table;
@@ -75,6 +83,9 @@ void *read_multiboot_table_entry(struct boot_info_t *boot_info, void *table)
{ {
case MB_END_TAG: case MB_END_TAG:
return NULL; return NULL;
case MB_MEMORY_INFO:
boot_info->memory_size = ((struct multiboot2_memory_info_t*) table)->high_memory * 1024;
break;
case MB_MEMORY_MAP: ; case MB_MEMORY_MAP: ;
unsigned int tag_size = ((struct multiboot2_memory_map_t*) table)->size - 16; unsigned int tag_size = ((struct multiboot2_memory_map_t*) table)->size - 16;
unsigned int entry_size = ((struct multiboot2_memory_map_t*) table)->entry_size; unsigned int entry_size = ((struct multiboot2_memory_map_t*) table)->entry_size;

View File

@@ -58,14 +58,14 @@ isr_preempt:
mov 4(%ebp), %eax mov 4(%ebp), %eax
push %eax push %eax
// Load ESP, then push it onto stack
mov 12(%ebp), %eax
push %eax
// Load SS, then push it onto stack // Load SS, then push it onto stack
mov 16(%ebp), %eax mov 16(%ebp), %eax
push %eax push %eax
// Load ESP, then push it onto stack
mov 12(%ebp), %eax
push %eax
// Load EBP, then push it onto stack // Load EBP, then push it onto stack
mov -4(%ebp), %eax mov -4(%ebp), %eax
push %eax push %eax
@@ -84,7 +84,7 @@ isr_preempt:
// Push pointer to the process context saved on the stack // Push pointer to the process context saved on the stack
push %esp push %esp
call save_context call kernel_store_active_context
mov %ebp, %esp mov %ebp, %esp
call kernel_advance_scheduler call kernel_advance_scheduler