#include "kernel.h" #include "mmgr.h" #include "heap.h" #include "stdio.h" #include "elf.h" #include "syscalls.h" #include "string.h" #include "config.h" #include "system.h" #include "platform/interrupts.h" #include "platform/context.h" #include "platform/putc.h" #include "types/status.h" struct kernel_t kernel; void kernel_initialize(struct boot_info_t *boot_info) { insert_region(&boot_info->map, (physaddr_t)&_kernel_pstart, (physaddr_t)&_kernel_pend - (physaddr_t)&_kernel_pstart, M_UNAVAILABLE); initialize_page_stack(&boot_info->map, (physaddr_t*)&_kernel_end); kminit(&_kernel_start, page_stack_top(), 0xFFC00000 - (size_t)&_kernel_start, 64); initialize_screen(); printf("***%s***\n", PACKAGE_STRING); printf("Type\t\tLocation\t\tSize\n"); for (size_t i = 0; i < boot_info->map.size && boot_info->map.array[i].size > 0; i++) { printf("%i\t\t\t%08x\t\t%u\n", boot_info->map.array[i].type, boot_info->map.array[i].location, boot_info->map.array[i].size); } kernel.active_process = NULL; kernel.next_pid = 1; kernel.process_table = NULL; kernel.port_table = NULL; if(construct_priority_queue(&kernel.priority_queue, 512) != S_OK) { panic("Failed to construct priority queue."); } memset(kernel.syscall_table, 0, sizeof(struct syscall_t) * MAX_SYSCALL_ID); set_syscall(SYSCALL_TEST, 1, 0, test_syscall); set_syscall(SYSCALL_MMAP, 3, 0, mmap); set_syscall(SYSCALL_MUNMAP, 2, 0, munmap); for(int i = 0; i < boot_info->module_count; i++) { if(load_module(&boot_info->modules[i]) != S_OK) { panic("Failed to load modules."); } } if(initialize_interrupts() != S_OK) { panic("Failed to initialize interrupts."); } irq_enable(); load_context(next_process()); } int set_syscall(int id, int arg_count, int pid, void *func_ptr) { if(id < 0 || id > MAX_SYSCALL_ID) { return S_OUT_OF_BOUNDS; } else if(kernel.syscall_table[id].defined) { return S_INVALID_ARGUMENT; } else if(arg_count < 0 || arg_count > 3) { return S_INVALID_ARGUMENT; } else if(pid != 0 && avl_get(kernel.process_table, pid) == NULL) { return S_DOESNT_EXIST; } else if(func_ptr == NULL) { return S_NULL_POINTER; } kernel.syscall_table[id].defined = true; kernel.syscall_table[id].arg_count = arg_count; kernel.syscall_table[id].process_id = pid; kernel.syscall_table[id].func_ptr_0 = func_ptr; return S_OK; } size_t do_syscall(enum syscall_id_t id, syscall_arg_t arg1, syscall_arg_t arg2, syscall_arg_t arg3, void *pc, void *stack, unsigned long flags) { if(id < 0 || id > MAX_SYSCALL_ID) { return S_BAD_SYSCALL; } else if(!kernel.syscall_table[id].defined) { return S_BAD_SYSCALL; } bool switched_address_space = false; if(kernel.syscall_table[id].process_id > 0) { struct process_t *callee = avl_get(kernel.process_table, kernel.syscall_table[id].process_id); if(callee == NULL) { kernel.syscall_table[id].defined = false; return S_BAD_SYSCALL; } paging_load_address_space(callee->page_table); switched_address_space = true; } set_context_pc(kernel.active_process->ctx, pc); set_context_stack(kernel.active_process->ctx, stack); set_context_flags(kernel.active_process->ctx, flags); size_t result; switch(kernel.syscall_table[id].arg_count) { case 0: result = kernel.syscall_table[id].func_ptr_0(); break; case 1: result = kernel.syscall_table[id].func_ptr_1(arg1); break; case 2: result = kernel.syscall_table[id].func_ptr_2(arg1, arg2); break; case 3: result = kernel.syscall_table[id].func_ptr_3(arg1, arg2, arg3); break; } if(switched_address_space) { paging_load_address_space(kernel.active_process->page_table); } return result; } int load_module(struct module_t *module) { physaddr_t module_address_space = create_address_space(); if(module_address_space == S_OUT_OF_MEMORY) { panic("failed to create address space for module: out of memory"); } paging_load_address_space(module_address_space); void *const load_base = (void*)0x80000000; size_t load_offset = 0; for(physaddr_t p = module->start & ~(page_size - 1); p < module->end; p += page_size) { int status = map_page(load_base + load_offset, p, PAGE_RW); switch(status) { case S_OUT_OF_MEMORY: panic("ran out of memory while mapping module"); case S_OUT_OF_BOUNDS: panic("got out-of-bounds error while mapping module"); } load_offset += page_size; } int status = load_program(load_base); switch(status) { case S_OUT_OF_MEMORY: panic("ran out of memory while reading ELF file"); case S_OUT_OF_BOUNDS: panic("got out-of-bounds error while reading ELF file"); } void *module_entry = ((struct elf_file_header_t*)load_base)->entry; printf("loaded module with entry point %08x\n", (unsigned int)module_entry); load_offset = 0; for(physaddr_t p = module->start & ~(page_size - 1); p < module->end; p += page_size) { int status = unmap_page(load_base + load_offset); switch(status) { case S_OUT_OF_MEMORY: panic("ran out of memory while unmapping module"); case S_OUT_OF_BOUNDS: panic("got out-of-bounds error while unmapping module"); } load_offset += page_size; } if(add_process(module_entry, 1, current_address_space()) > 0) { return S_OK; } else { return -1; } } int active_process() { if(kernel.active_process == NULL) { return 0; } else { return kernel.active_process->pid; } } int add_process(void *program_entry, int priority, physaddr_t address_space) { struct process_t *new_process = (struct process_t*) kmalloc(sizeof(struct process_t)); if(new_process == NULL) { return 0; } struct process_context_t *initial_context = initialize_context(program_entry); new_process->priority = priority; new_process->pid = kernel.next_pid; new_process->page_table = address_space; new_process->state = PROCESS_ACTIVE; new_process->message_buffer = NULL; new_process->ctx = initial_context; queue_construct(&new_process->sending_queue); queue_construct(&new_process->message_queue); kernel.process_table = avl_insert(kernel.process_table, new_process->pid, new_process); priorityqueue_insert(&kernel.priority_queue, new_process, new_process->priority); kernel.next_pid++; return new_process->pid; } struct process_context_t *next_process() { if(kernel.active_process != NULL) { priorityqueue_insert(&kernel.priority_queue, kernel.active_process, kernel.active_process->priority); } kernel.active_process = priorityqueue_extract_min(&kernel.priority_queue); if(kernel.active_process != NULL) { paging_load_address_space(kernel.active_process->page_table); printf("entering process %08x cr3=%08x ctx=%08x.\n", kernel.active_process, kernel.active_process->page_table, kernel.active_process->ctx); return kernel.active_process->ctx; } panic("no processes available to enter!"); } int terminate_process(size_t process_id) { struct process_t *process = avl_get(kernel.process_table, process_id); if(process == NULL) { return S_DOESNT_EXIST; } if(kernel.active_process == process) { kernel.active_process = NULL; } kernel.process_table = avl_remove(kernel.process_table, process_id); priorityqueue_remove(&kernel.priority_queue, process); destroy_context(process->ctx); kfree(process); return S_OK; } int store_active_context(struct process_context_t *context, size_t size) { if(kernel.active_process != NULL && kernel.active_process->ctx != NULL) { memcpy(kernel.active_process->ctx, context, size); return S_OK; } else { return S_DOESNT_EXIST; } } int open_port(unsigned long id) { if(avl_get(kernel.port_table, id) != NULL) { return S_EXISTS; } struct port_t *port = kmalloc(sizeof(struct port_t)); port->id = id; port->owner_pid = kernel.active_process->pid; avl_insert(kernel.port_table, id, port); return S_OK; } int close_port(unsigned long id) { struct port_t *port = avl_get(kernel.port_table, id); if(port == NULL) { return S_DOESNT_EXIST; } else if(port->owner_pid != kernel.active_process->pid) { return S_INVALID_ARGUMENT; } avl_remove(kernel.port_table, id); kfree(port); return S_OK; } int send_message(int recipient, struct message_t *message, int flags) { int op_type = flags & IO_OP; int dest_type = flags & IO_RECIPIENT_TYPE; if((flags & ~(IO_OP | IO_RECIPIENT_TYPE)) != 0 || dest_type >= IO_MAILBOX) { return S_INVALID_ARGUMENT; } if(dest_type == IO_PORT) { struct port_t *port = avl_get(kernel.port_table, recipient); if(port != NULL) { recipient = port->owner_pid; } else { return S_DOESNT_EXIST; } } struct process_t *dest = avl_get(kernel.process_table, recipient); if(dest == NULL) { return S_DOESNT_EXIST; } else if(dest->message_buffer != NULL) { struct message_t kernel_buffer; memcpy(&kernel_buffer, message, sizeof(struct message_t)); kernel_buffer.sender = kernel.active_process->pid; paging_load_address_space(dest->page_table); memcpy(dest->message_buffer, &kernel_buffer, sizeof(struct message_t)); paging_load_address_space(kernel.active_process->page_table); dest->message_buffer = NULL; dest->state = PROCESS_ACTIVE; set_context_return(dest->ctx, S_OK); priorityqueue_insert(&kernel.priority_queue, dest, dest->priority); return S_OK; } else if(op_type == IO_ASYNC) { struct message_t *queued_msg = kmalloc(sizeof(struct message_t)); if(queued_msg == NULL) { return S_OUT_OF_MEMORY; } memcpy(queued_msg, message, sizeof(struct message_t)); queue_insert(&dest->message_queue, queued_msg); return S_OK; } else { queue_insert(&dest->sending_queue, kernel.active_process); kernel.active_process->state = PROCESS_SENDING; kernel.active_process = NULL; load_context(next_process()); } } int receive_message(struct message_t *buffer, int flags) { if(kernel.active_process->sending_queue.count > 0) { struct message_t kernel_buffer; struct process_t *sender = queue_get_next(&kernel.active_process->sending_queue); paging_load_address_space(sender->page_table); memcpy(&kernel_buffer, &sender->message_buffer, sizeof(struct message_t)); kernel_buffer.sender = sender->pid; paging_load_address_space(kernel.active_process->page_table); memcpy(buffer, &kernel_buffer, sizeof(struct message_t)); sender->state = PROCESS_ACTIVE; set_context_return(sender->ctx, S_OK); priorityqueue_insert(&kernel.priority_queue, sender, sender->priority); return S_OK; } else if(kernel.active_process->message_queue.count > 0) { struct message_t *queued_msg = queue_get_next(&kernel.active_process->message_queue); memcpy(buffer, queued_msg, sizeof(struct message_t)); kfree(queued_msg); return S_OK; } else if((flags & IO_OP) == IO_ASYNC) { return S_DOESNT_EXIST; } else { kernel.active_process->message_buffer = buffer; kernel.active_process->state = PROCESS_REQUESTING; kernel.active_process = NULL; load_context(next_process()); } } void panic(const char *message) { printf("panic: %s", message); asm("cli"); while(1) asm("hlt"); }