#include "mmgr.h" #include "string.h" #include "math.h" #include "platform/paging.h" #include "types/status.h" #include #include /** * @brief Describes a stack containing the physical addresses of available page * frames. * */ struct page_stack_t { /** * @brief The total number of physical pages managed by the system. * */ unsigned long total_pages; /** * @brief Points to the topmost physical address on the stack. * */ physaddr_t *stack_pointer; /** * @brief Points to the bottom of the stack. * */ physaddr_t *base_pointer; /** * @brief Points to the limit of the stack. The stack cannot grow beyond * this point. * */ physaddr_t *limit_pointer; } page_stack; struct page_map_t { /** * @brief The underlying bitmap representing the availability of chunks of * physical memory. * */ unsigned long *bitmap; /** * @brief The size of the bitmap in bytes. * */ unsigned long bitmap_size; /** * @brief The size in bytes of the smallest unit of allocation. * * This value should either be the size of a page on the host system, or * possibly some number of pages. * */ unsigned long block_size; /** * @brief * */ unsigned long height; /** * @brief The number of available blocks of memory. * * Due to memory fragmentation, it may not be possible to allocate all * available memory at once. * */ unsigned long free_block_count; } page_map; const int bitmap_word_size = 8 * sizeof(*page_map.bitmap); int split_block(int index) { if(index) { int bitmap_index = index / bitmap_word_size; int bitmap_offset = index % bitmap_word_size; page_map.bitmap[bitmap_index] &= ~(1 << bitmap_offset); index *= 2; bitmap_index = index / bitmap_word_size; bitmap_offset = index / bitmap_word_size; page_map.bitmap[bitmap_index] |= 1 << bitmap_offset; page_map.bitmap[bitmap_index] |= 1 << (bitmap_offset ^ 1); } return index; } int find_free_region(int height) { if(height > page_map.height || height < 0) { return 0; } else if(height <= page_map.height - ilog2(bitmap_word_size)) { for(int index = (1 << (page_map.height - height)) / bitmap_word_size; index < (1 << (page_map.height - height + 1)) / bitmap_word_size; index++) { if(page_map.bitmap[index] != 0) { return bitmap_word_size * index + __builtin_ctz(page_map.bitmap[index]); } } } else { static const int bitmasks[] = {0x00000002, 0x0000000C, 0x000000F0, 0x0000FF00, 0xFFFF0000}; int depth = page_map.height - height; if(page_map.bitmap[0] & bitmasks[depth]) { return __builtin_ctz(page_map.bitmap[0] & bitmasks[depth]); } } return split_block(find_free_region(height + 1)); } physaddr_t reserve_region(size_t size) { int height = llog2(size / page_map.block_size); int index = find_free_region(height); if(index) { int bitmap_index = index / bitmap_word_size; int bitmap_offset = index % bitmap_word_size; page_map.bitmap[bitmap_index] &= ~(1 << bitmap_offset); return (page_map.block_size << height) * (index - (1 << (page_map.height - height))); } else { return ENOMEM; } } int free_region(physaddr_t location, size_t size) { int height = llog2(size / page_map.block_size); int index = (location / (page_map.block_size * (1 << height))) + (1 << (page_map.height - height)); int bitmap_index = index / bitmap_word_size; int bitmap_offset = index % bitmap_word_size; page_map.bitmap[bitmap_index] |= 1 << bitmap_offset; while(page_map.bitmap[bitmap_index] & (1 << (bitmap_offset ^ 1))) { page_map.bitmap[bitmap_index] &= ~(1 << bitmap_offset); page_map.bitmap[bitmap_index] &= ~(1 << (bitmap_offset ^ 1)); index /= 2; bitmap_index = index / bitmap_word_size; bitmap_offset = index % bitmap_word_size; page_map.bitmap[bitmap_index] |= 1 << bitmap_offset; } return ENONE; } physaddr_t reserve_page() { return reserve_region(page_size); } int free_page(physaddr_t location) { return free_region(location, page_size); } size_t free_page_count() { return page_map.free_block_count; } void *page_map_base() { return (void*)page_map.bitmap; } void *page_map_end() { return (void*)page_map.bitmap + page_map.bitmap_size; } enum error_t initialize_page_map(struct memory_map_t *map, void *base, size_t memory_size, unsigned long block_size) { // Round memory_size up to nearest power of 2 memory_size = 1 << llog2(memory_size); page_map.bitmap = (unsigned long*) base; page_map.bitmap_size = (memory_size / page_size) / 4; page_map.block_size = block_size; page_map.height = llog2(memory_size / block_size); page_map.free_block_count = 0; int block_log = llog2(block_size); int pages_mapped = 0; for(int i = 0; i < map->size; i++) { if(map->array[i].type != M_AVAILABLE) { continue; } physaddr_t location = (map->array[i].location + page_size - 1) & ~(page_size - 1); physaddr_t region_end = map->array[i].location + map->array[i].size; while(location + block_size <= region_end) { if(pages_mapped < page_map.bitmap_size / page_size) { void *page = (void*)page_map.bitmap + pages_mapped * page_size; for(int level = 0; level < page_table_levels; level++) { if(!(get_pte_type(page, level) & PAGE_PRESENT)) { if(set_pte(page, level, PAGE_PRESENT | PAGE_RW, location)) { return ENOMEM; } else if(level == page_table_levels - 1) { pages_mapped++; } break; } else if(level == page_table_levels - 1) { pages_mapped++; } } location += page_size; continue; } int bit_offset = (location / block_size) % bitmap_word_size; int bitmap_index = (location / block_size) / bitmap_word_size; size_t chunk_size = (bitmap_word_size - bit_offset) * block_size; if(bit_offset == 0 && (region_end - location) >= chunk_size) { // Set all bits in the word page_map.bitmap[bitmap_index] = ~0; } else if(bit_offset == 0) { // Set the first 'count' bits int count = (region_end - location) >> block_log; page_map.bitmap[bitmap_index] |= (1 << count) - 1; } else if((region_end - location) >= chunk_size) { // Set all bits starting at 'bit_offset' page_map.bitmap[bitmap_index] |= ~((1 << bit_offset) - 1); } else { // Set all bits starting at 'bit_offset' up to 'count' int count = (region_end - location) >> block_log; page_map.bitmap[bitmap_index] |= ((1 << count) - 1) & ~((1 << bit_offset) - 1); } location += chunk_size; } } return ENONE; } physaddr_t create_address_space() { physaddr_t table = reserve_page(); int result; if (table == ENOMEM) { return ENOMEM; } else if((result = paging_init_top_table(table))) { return result; } else { return table; } } physaddr_t current_address_space() { return paging_current_address_space(); } int map_page(void *page, physaddr_t frame, int flags) { if (frame % page_size != 0) { return EINVALIDARG; } for(int level = 0; level < page_table_levels - 1; level++) { int present = get_pte_type(page, level) & PAGE_PRESENT; if(present == 0) { physaddr_t new_table = reserve_page(); if(new_table == ENOMEM) { return ENOMEM; } set_pte(page, level, PAGE_PRESENT | PAGE_USERMODE | PAGE_RW, new_table); wipe_page_table(page, level + 1); } } set_pte(page, page_table_levels - 1, PAGE_PRESENT | flags, frame); return ENONE; } physaddr_t unmap_page(void *page) { for(int level = 0; level < page_table_levels; level++) { if((get_pte_type(page, level) & PAGE_PRESENT) == 0) return EOUTOFBOUNDS; } physaddr_t frame = get_pte_address(page, page_table_levels - 1); set_pte(page, page_table_levels - 1, 0, 0); return frame; } int page_type(void *page) { for(int level = 0; level < page_table_levels - 1; level++) { int flags = get_pte_type(page, level); if((flags & PAGE_PRESENT) == 0) return flags; } return get_pte_type(page, page_table_levels - 1); } physaddr_t physical_address(void *linear_address) { return get_pte_address(linear_address, page_table_levels - 1); }