#include "kernel.h" #include "mmgr.h" #include "heap.h" #include "stdio.h" #include "elf.h" #include "syscalls.h" #include "string.h" #include "config.h" #include "system.h" #include "platform/interrupts.h" #include "platform/context.h" #include "platform/putc.h" #include "types/status.h" #include "types/syscallid.h" struct kernel_t kernel; void kernel_initialize(struct boot_info_t *boot_info) { if(initialize_screen()) { asm("hlt"); } printf("***%s***\n", PACKAGE_STRING); printf("Total memory: %08x\n", boot_info->memory_size); printf("kernel: %08x ... %08x\n", &_kernel_pstart, &_kernel_pend); printf("Type\t\tLocation\t\tSize\n"); for (size_t i = 0; i < boot_info->map.size && boot_info->map.array[i].size > 0; i++) { printf("%i\t\t\t%08x\t\t%u\n", boot_info->map.array[i].type, boot_info->map.array[i].location, boot_info->map.array[i].size); } memmap_insert_region(&boot_info->map, (physaddr_t)&_kernel_pstart, (physaddr_t)&_kernel_pend - (physaddr_t)&_kernel_pstart, M_UNAVAILABLE); if(initialize_page_map(&boot_info->map, (physaddr_t*)&_kernel_end, boot_info->memory_size, page_size)) { panic("Failed to initialize page allocator."); } if(kminit(&_kernel_start, page_map_end(), 0xFFC00000 - (size_t)&_kernel_start, 64)) { panic("Failed to initialize heap."); } kernel.active_process = NULL; kernel.next_pid = 1; kernel.process_table = NULL; kernel.port_table = NULL; if(construct_priority_queue(&kernel.priority_queue, 512) != ENONE) { panic("Failed to construct priority queue."); } memset(kernel.syscall_table, 0, sizeof(struct syscall_t) * MAX_SYSCALL_ID); set_syscall(SYSCALL_TEST, 1, 0, test_syscall); set_syscall(SYSCALL_MMAP, 3, 0, mmap); set_syscall(SYSCALL_MUNMAP, 2, 0, munmap); set_syscall(SYSCALL_SEND, 3, 0, send); set_syscall(SYSCALL_RECEIVE, 2, 0, receive); set_syscall(SYSCALL_OPEN_PORT, 1, 0, open_port); set_syscall(SYSCALL_CLOSE_PORT, 1, 0, close_port); for(int i = 0; i < boot_info->module_count; i++) { if(kernel_load_module(&boot_info->modules[i]) != ENONE) { panic("Failed to load modules."); } } if(initialize_interrupts() != ENONE) { panic("Failed to initialize interrupts."); } irq_enable(); load_context(kernel_advance_scheduler()); } error_t set_syscall(int id, int arg_count, int pid, void *func_ptr) { if(id < 0 || id > MAX_SYSCALL_ID) { return EOUTOFBOUNDS; } else if(kernel.syscall_table[id].defined) { return EINVALIDARG; } else if(arg_count < 0 || arg_count > 3) { return EINVALIDARG; } else if(pid != 0 && avl_get(kernel.process_table, pid) == NULL) { return EDOESNTEXIST; } else if(func_ptr == NULL) { return ENULLPTR; } kernel.syscall_table[id].defined = true; kernel.syscall_table[id].arg_count = arg_count; kernel.syscall_table[id].process_id = pid; kernel.syscall_table[id].func_ptr_0 = func_ptr; return ENONE; } size_t do_syscall(syscall_id_t id, syscall_arg_t arg1, syscall_arg_t arg2, syscall_arg_t arg3, void *pc, void *stack, unsigned long flags) { if(id < 0 || id > MAX_SYSCALL_ID) { return ENOSYSCALL; } else if(!kernel.syscall_table[id].defined) { return ENOSYSCALL; } bool switched_address_space = false; if(kernel.syscall_table[id].process_id > 0) { struct process_t *callee = avl_get(kernel.process_table, kernel.syscall_table[id].process_id); if(callee == NULL) { kernel.syscall_table[id].defined = false; return ENOSYSCALL; } paging_load_address_space(callee->page_table); switched_address_space = true; } set_context_pc(kernel.active_process->ctx, pc); set_context_stack(kernel.active_process->ctx, stack); set_context_flags(kernel.active_process->ctx, flags); size_t result; switch(kernel.syscall_table[id].arg_count) { case 0: result = kernel.syscall_table[id].func_ptr_0(); break; case 1: result = kernel.syscall_table[id].func_ptr_1(arg1); break; case 2: result = kernel.syscall_table[id].func_ptr_2(arg1, arg2); break; case 3: result = kernel.syscall_table[id].func_ptr_3(arg1, arg2, arg3); break; } if(switched_address_space) { paging_load_address_space(kernel.active_process->page_table); } return result; } error_t kernel_load_module(struct module_t *module) { physaddr_t module_address_space = create_address_space(); if(module_address_space == ENOMEM) { panic("failed to create address space for module: out of memory"); } paging_load_address_space(module_address_space); void *const load_base = (void*)0x80000000; size_t load_offset = 0; for(physaddr_t p = module->start & ~(page_size - 1); p < module->end; p += page_size) { int status = map_page(load_base + load_offset, p, PAGE_RW); switch(status) { case ENOMEM: panic("ran out of memory while mapping module"); case EOUTOFBOUNDS: panic("got out-of-bounds error while mapping module"); } load_offset += page_size; } int status = load_program(load_base); switch(status) { case ENOMEM: panic("ran out of memory while reading ELF file"); case EOUTOFBOUNDS: panic("got out-of-bounds error while reading ELF file"); } void *module_entry = ((struct elf_file_header_t*)load_base)->entry; printf("loaded module with entry point %08x\n", (unsigned int)module_entry); load_offset = 0; for(physaddr_t p = module->start & ~(page_size - 1); p < module->end; p += page_size) { int status = unmap_page(load_base + load_offset); switch(status) { case ENOMEM: panic("ran out of memory while unmapping module"); case EOUTOFBOUNDS: panic("got out-of-bounds error while unmapping module"); } load_offset += page_size; } if(kernel_spawn_process(module_entry, 1, current_address_space()) > 0) { return ENONE; } else { return -1; } } unsigned long kernel_current_pid() { if(kernel.active_process == NULL) { return 0; } else { return kernel.active_process->pid; } } struct process_context_t *kernel_current_context() { if(kernel.active_process == NULL) { return NULL; } else { return kernel.active_process->ctx; } } unsigned long kernel_spawn_process(void *program_entry, int priority, physaddr_t address_space) { struct process_t *new_process = (struct process_t*) kmalloc(sizeof(struct process_t)); if(new_process == NULL) { return 0; } struct process_context_t *initial_context = kmalloc(sizeof(struct process_context_t)); if(initial_context == NULL) { return 0; } physaddr_t stack_page = reserve_page(); if(stack_page % page_size) { return 0; } map_page((void*)&_kernel_start - page_size, stack_page, PAGE_PRESENT | PAGE_USERMODE | PAGE_RW); memset(initial_context, 0, sizeof(struct process_context_t)); set_context_pc(initial_context, program_entry); set_context_flags(initial_context, DEFAULT_FLAGS); set_context_stack(initial_context, &_kernel_start); new_process->priority = priority; new_process->pid = kernel.next_pid; new_process->page_table = address_space; new_process->state = PROCESS_ACTIVE; new_process->message_buffer = NULL; new_process->ctx = initial_context; queue_construct(&new_process->sending_queue); queue_construct(&new_process->message_queue); kernel.process_table = avl_insert(kernel.process_table, new_process->pid, new_process); priorityqueue_insert(&kernel.priority_queue, new_process, new_process->priority); kernel.next_pid++; return new_process->pid; } struct process_context_t *kernel_advance_scheduler() { if(kernel.active_process != NULL) { priorityqueue_insert(&kernel.priority_queue, kernel.active_process, kernel.active_process->priority); } kernel.active_process = priorityqueue_extract_min(&kernel.priority_queue); if(kernel.active_process != NULL) { paging_load_address_space(kernel.active_process->page_table); printf("entering process %08x cr3=%08x ctx=%08x sched=%i.\n", kernel.active_process->pid, kernel.active_process->page_table, kernel.active_process->ctx, kernel.priority_queue.size); return kernel.active_process->ctx; } panic("no processes available to enter!"); } error_t kernel_terminate_process(size_t process_id) { struct process_t *process = avl_get(kernel.process_table, process_id); if(process == NULL) { return EDOESNTEXIST; } if(kernel.active_process == process) { kernel.active_process = NULL; } kernel.process_table = avl_remove(kernel.process_table, process_id); priorityqueue_remove(&kernel.priority_queue, process); for(struct message_t *msg = queue_get_next(&process->message_queue); msg != NULL; msg = queue_get_next(&process->message_queue)) { kfree(msg); } for(struct process_t *sender = queue_get_next(&process->sending_queue); sender != NULL; sender = queue_get_next(&process->sending_queue)) { sender->state = PROCESS_ACTIVE; set_context_return(sender->ctx, EEXITED); priorityqueue_insert(&kernel.priority_queue, sender, sender->priority); } kfree(process->ctx); kfree(process); return ENONE; } error_t kernel_store_active_context(struct process_context_t *context) { if(kernel.active_process != NULL && kernel.active_process->ctx != NULL) { memcpy(kernel.active_process->ctx, context, sizeof(*context)); return ENONE; } else { return EDOESNTEXIST; } } error_t kernel_create_port(unsigned long id) { if(avl_get(kernel.port_table, id) != NULL) { return EEXISTS; } printf("opening port %i -> %i\n", id, kernel.active_process->pid); struct port_t *port = kmalloc(sizeof(struct port_t)); port->id = id; port->owner_pid = kernel.active_process->pid; kernel.port_table = avl_insert(kernel.port_table, id, port); return ENONE; } error_t kernel_remove_port(unsigned long id) { struct port_t *port = avl_get(kernel.port_table, id); if(port == NULL) { return EDOESNTEXIST; } else if(port->owner_pid != kernel.active_process->pid) { return EPERM; } printf("closing port %i attached to %i\n", id, kernel.active_process->pid); kernel.port_table = avl_remove(kernel.port_table, id); kfree(port); return ENONE; } unsigned long kernel_get_port_owner(unsigned long id) { struct port_t *port = avl_get(kernel.port_table, id); if(port == NULL) { return 0; } else { return port->owner_pid; } } error_t kernel_send_message(unsigned long recipient, struct message_t *message) { struct process_t *dest = avl_get(kernel.process_table, recipient); if(dest == NULL) { return EDOESNTEXIST; } else if(dest->message_buffer != NULL && dest->state == PROCESS_REQUESTING) { printf("Sending message directly from %i to %i\n", kernel.active_process->pid, dest->pid); struct message_t kernel_buffer; memcpy(&kernel_buffer, message, sizeof(struct message_t)); kernel_buffer.sender = kernel.active_process->pid; paging_load_address_space(dest->page_table); memcpy(dest->message_buffer, &kernel_buffer, sizeof(struct message_t)); paging_load_address_space(kernel.active_process->page_table); dest->message_buffer = NULL; dest->state = PROCESS_ACTIVE; set_context_return(dest->ctx, ENONE); priorityqueue_insert(&kernel.priority_queue, dest, dest->priority); return ENONE; } else { return EBUSY; } } error_t kernel_queue_message(unsigned long recipient, struct message_t *message) { struct process_t *dest = avl_get(kernel.process_table, recipient); if(dest != NULL) { printf("Queueing message from %i to %i\n", kernel.active_process->pid, dest->pid); struct message_t *queued_msg = kmalloc(sizeof(struct message_t)); if(queued_msg == NULL) { return ENOMEM; } memcpy(queued_msg, message, sizeof(struct message_t)); queue_insert(&dest->message_queue, queued_msg); return ENONE; } else { return EDOESNTEXIST; } } int receive_message(struct message_t *buffer, int flags) { if(kernel.active_process->message_queue.count > 0) { struct message_t *queued_msg = queue_get_next(&kernel.active_process->message_queue); memcpy(buffer, queued_msg, sizeof(struct message_t)); kfree(queued_msg); return ENONE; } else if((flags & IO_OP) == IO_ASYNC) { return EDOESNTEXIST; } else { kernel.active_process->message_buffer = buffer; kernel.active_process->state = PROCESS_REQUESTING; kernel.active_process = NULL; load_context(kernel_advance_scheduler()); } } error_t kernel_register_interrupt_handler(unsigned long interrupt, signal_handler_t handler, void *userdata) { if(avl_get(kernel.interrupt_handlers, interrupt) != NULL) { return EEXISTS; } struct signal_action_t *action = kmalloc(sizeof(struct signal_action_t)); action->pid = kernel.active_process->pid; action->func_ptr = handler; action->userdata = userdata; kernel.interrupt_handlers = avl_insert(kernel.interrupt_handlers, interrupt, action); return ENONE; } error_t kernel_remove_interrupt_handler(unsigned long interrupt) { struct signal_action_t *action = avl_get(kernel.interrupt_handlers, interrupt); if(action == NULL) { return EDOESNTEXIST; } kfree(action); kernel.interrupt_handlers = avl_remove(kernel.interrupt_handlers, interrupt); return ENONE; } error_t kernel_execute_interrupt_handler(unsigned long interrupt) { struct signal_action_t *action = avl_get(kernel.interrupt_handlers, interrupt); if(action == NULL) { return EDOESNTEXIST; } struct process_t *process = avl_get(kernel.process_table, action->pid); if(process == NULL) { kernel.interrupt_handlers = avl_remove(kernel.interrupt_handlers, interrupt); return EDOESNTEXIST; } paging_load_address_space(process->page_table); struct signal_context_t siginfo = { .signal_id = interrupt }; void *siginfo_ptr = context_stack_push_struct(process->ctx, &siginfo, sizeof(siginfo)); context_stack_push_struct(process->ctx, process->ctx, sizeof(*process->ctx)); context_stack_push(process->ctx, process->state); context_call_func(process->ctx, action->func_ptr, action->trampoline_ptr, 2, action->userdata, siginfo_ptr); if(process->state != PROCESS_ACTIVE) { process->state = PROCESS_ACTIVE; priorityqueue_insert(&kernel.priority_queue, process, process->priority); } paging_load_address_space(kernel.active_process->page_table); return ENONE; } error_t kernel_signal_return() { context_cleanup_func(kernel.active_process->ctx, 2); context_stack_pop(kernel.active_process->ctx, &kernel.active_process->state); context_stack_pop_struct(kernel.active_process->ctx, kernel.active_process->ctx, sizeof(*kernel.active_process->ctx)); if(kernel.active_process->state == PROCESS_REQUESTING) { receive_message(kernel.active_process->message_buffer, 0); load_context(kernel.active_process->ctx); } return ENONE; } void panic(const char *message) { printf("panic: %s", message); asm("cli"); while(1) asm("hlt"); }