Files
quark-kernel/src/mmgr.c
ngiddings 590290f92b Fixes and improvements in mmgr.c
Bug fixes in page allocator
Significant performance improvements
2022-11-20 16:32:25 -06:00

351 lines
10 KiB
C

#include "mmgr.h"
#include "string.h"
#include "math.h"
#include "platform/paging.h"
#include "types/status.h"
#include <stdint.h>
#include <stdbool.h>
#define MAX_CACHE_SIZE 32
struct page_map_t
{
/**
* @brief The underlying bitmap representing the availability of chunks of
* physical memory.
*
*/
unsigned long *bitmap;
/**
* @brief Stores a list of available blocks of memory to speed up allocation.
*
*/
unsigned long *cache;
/**
* @brief The size of the bitmap in bytes.
*
*/
unsigned long bitmap_size;
/**
* @brief The size in bytes of the smallest unit of allocation.
*
* This value should either be the size of a page on the host system, or
* possibly some number of pages.
*
*/
unsigned long block_size;
/**
* @brief
*
*/
unsigned long height;
/**
* @brief The number of available blocks of memory.
*
* Due to memory fragmentation, it may not be possible to allocate all
* available memory at once.
*
*/
unsigned long free_block_count;
} page_map;
const int bitmap_word_size = 8 * sizeof(*page_map.bitmap);
int split_block(int index)
{
if (index)
{
unsigned long bitmap_index = index / bitmap_word_size;
unsigned long bitmap_offset = index % bitmap_word_size;
page_map.bitmap[bitmap_index] &= ~((unsigned long)1 << bitmap_offset);
index *= 2;
bitmap_index = index / bitmap_word_size;
bitmap_offset = index % bitmap_word_size;
page_map.bitmap[bitmap_index] |= (unsigned long)1 << bitmap_offset;
page_map.bitmap[bitmap_index] |= (unsigned long)1 << (bitmap_offset ^ 1);
unsigned long depth = llog2(index + 1) - 1;
unsigned long cache_start = llog2(bitmap_word_size);
if(depth >= cache_start && page_map.cache[depth - cache_start] == 0)
{
page_map.cache[depth - cache_start] = index + 1;
}
}
return index;
}
int find_free_region(int height)
{
if (height > page_map.height || height < 0)
{
return 0;
}
else if (height <= page_map.height - ilog2(bitmap_word_size))
{
if(page_map.cache[page_map.height - height - llog2(bitmap_word_size)])
{
unsigned long index = page_map.cache[page_map.height - height - llog2(bitmap_word_size)];
page_map.cache[page_map.height - height - llog2(bitmap_word_size)] = 0;
return index;
}
unsigned long start = (1 << (page_map.height - height)) / bitmap_word_size;
unsigned long end = ((1 << (page_map.height - height + 1)) / bitmap_word_size);
for (int index = start; index < end; index++)
{
if (page_map.bitmap[index] != 0)
{
return bitmap_word_size * index + __builtin_ctzl(page_map.bitmap[index]);
}
}
}
else
{
#if __SIZEOF_LONG__ == 8
static const unsigned long bitmasks[] = {0x00000002, 0x0000000C, 0x000000F0, 0x0000FF00, 0xFFFF0000, 0xFFFFFFFF00000000};
#else
static const unsigned long bitmasks[] = {0x00000002, 0x0000000C, 0x000000F0, 0x0000FF00, 0xFFFF0000};
#endif
int depth = page_map.height - height;
if (page_map.bitmap[0] & bitmasks[depth])
{
return __builtin_ctzl(page_map.bitmap[0] & bitmasks[depth]);
}
}
return split_block(find_free_region(height + 1));
}
physaddr_t reserve_region(size_t size)
{
int height = llog2(size / page_map.block_size);
int index = find_free_region(height);
if (index)
{
int bitmap_index = index / bitmap_word_size;
int bitmap_offset = index % bitmap_word_size;
page_map.bitmap[bitmap_index] &= ~((unsigned long)1 << bitmap_offset);
return (page_map.block_size << height) * (index - ((unsigned long)1 << (page_map.height - height)));
}
else
{
return ENOMEM;
}
}
int free_region(physaddr_t location, size_t size)
{
int height = llog2(size / page_map.block_size);
int index = (location / (page_map.block_size * ((unsigned long)1 << height))) + (1 << (page_map.height - height));
int bitmap_index = index / bitmap_word_size;
int bitmap_offset = index % bitmap_word_size;
page_map.bitmap[bitmap_index] |= (unsigned long)1 << bitmap_offset;
unsigned long cache_start = llog2(bitmap_word_size);
while (page_map.bitmap[bitmap_index] & ((unsigned long)1 << (bitmap_offset ^ 1)))
{
unsigned long depth = llog2(index + 1) - 1;
if(page_map.cache[depth - cache_start] == (index ^ 1))
{
page_map.cache[depth - cache_start] = ENOMEM;
}
page_map.bitmap[bitmap_index] &= ~((unsigned long)1 << bitmap_offset);
page_map.bitmap[bitmap_index] &= ~((unsigned long)1 << (bitmap_offset ^ 1));
index /= 2;
bitmap_index = index / bitmap_word_size;
bitmap_offset = index % bitmap_word_size;
page_map.bitmap[bitmap_index] |= (unsigned long)1 << bitmap_offset;
}
unsigned long depth = llog2(index + 1) - 1;
if (depth >= cache_start && page_map.cache[depth - cache_start] == 0)
{
page_map.cache[depth - cache_start] = index;
}
return ENONE;
}
physaddr_t reserve_page()
{
return reserve_region(page_size);
}
int free_page(physaddr_t location)
{
return free_region(location, page_size);
}
size_t free_page_count()
{
return page_map.free_block_count;
}
void *page_map_base()
{
return (void*)page_map.bitmap;
}
void *page_map_end()
{
return (void*)page_map.bitmap + page_map.bitmap_size;
}
enum error_t initialize_page_map(struct memory_map_t *map, void *base, size_t memory_size, unsigned long block_size)
{
static unsigned long page_map_cache[MAX_CACHE_SIZE];
// Round memory_size up to nearest power of 2
memory_size = 1 << llog2(memory_size);
page_map.bitmap = (unsigned long*) base;
page_map.cache = page_map_cache;
page_map.bitmap_size = (memory_size / page_size) / 4;
page_map.block_size = block_size;
page_map.height = llog2(memory_size / block_size);
page_map.free_block_count = 0;
int block_log = llog2(block_size);
int pages_mapped = 0;
for(int i = 0; i < map->size; i++)
{
if(map->array[i].type != M_AVAILABLE)
{
continue;
}
physaddr_t location = (map->array[i].location + page_size - 1) & ~(page_size - 1);
physaddr_t region_end = map->array[i].location + map->array[i].size;
while(location + block_size <= region_end)
{
if(pages_mapped < page_map.bitmap_size / page_size)
{
void *page = (void*)page_map.bitmap + pages_mapped * page_size;
for(int level = 0; level < page_table_levels; level++)
{
if(!(get_pte_type(page, level) & PAGE_PRESENT))
{
if(set_pte(page, level, PAGE_PRESENT | PAGE_RW, location))
{
return ENOMEM;
}
else if(level == page_table_levels - 1)
{
pages_mapped++;
}
break;
}
else if(level == page_table_levels - 1)
{
pages_mapped++;
}
}
location += page_size;
continue;
}
int bit_offset = (location / block_size) % bitmap_word_size;
int bitmap_index = (location / block_size) / bitmap_word_size;
size_t chunk_size = (bitmap_word_size - bit_offset) * block_size;
if(bit_offset == 0 && (region_end - location) >= chunk_size)
{
// Set all bits in the word
page_map.bitmap[bitmap_index] = ~0;
}
else if(bit_offset == 0)
{
// Set the first 'count' bits
int count = (region_end - location) >> block_log;
page_map.bitmap[bitmap_index] |= (1 << count) - 1;
}
else if((region_end - location) >= chunk_size)
{
// Set all bits starting at 'bit_offset'
page_map.bitmap[bitmap_index] |= ~((1 << bit_offset) - 1);
}
else
{
// Set all bits starting at 'bit_offset' up to 'count'
int count = (region_end - location) >> block_log;
page_map.bitmap[bitmap_index] |= ((1 << count) - 1) & ~((1 << bit_offset) - 1);
}
location += chunk_size;
}
}
for(int i = 0; i < MAX_CACHE_SIZE; i++)
{
page_map.cache[i] = 0;
}
return ENONE;
}
physaddr_t create_address_space()
{
physaddr_t table = reserve_page();
int result;
if (table == ENOMEM)
{
return ENOMEM;
}
else if((result = paging_init_top_table(table)))
{
return result;
}
else
{
return table;
}
}
physaddr_t current_address_space()
{
return paging_current_address_space();
}
int map_page(void *page, physaddr_t frame, int flags)
{
if (frame % page_size != 0)
{
return EINVALIDARG;
}
for(int level = 0; level < page_table_levels - 1; level++)
{
int present = get_pte_type(page, level) & PAGE_PRESENT;
if(present == 0)
{
physaddr_t new_table = reserve_page();
if(new_table == ENOMEM)
{
return ENOMEM;
}
set_pte(page, level, PAGE_PRESENT | PAGE_USERMODE | PAGE_RW, new_table);
wipe_page_table(page, level + 1);
}
}
set_pte(page, page_table_levels - 1, PAGE_PRESENT | flags, frame);
return ENONE;
}
physaddr_t unmap_page(void *page)
{
for(int level = 0; level < page_table_levels; level++)
{
if((get_pte_type(page, level) & PAGE_PRESENT) == 0)
return EOUTOFBOUNDS;
}
physaddr_t frame = get_pte_address(page, page_table_levels - 1);
set_pte(page, page_table_levels - 1, 0, 0);
return frame;
}
int page_type(void *page)
{
for(int level = 0; level < page_table_levels - 1; level++)
{
int flags = get_pte_type(page, level);
if((flags & PAGE_PRESENT) == 0)
return flags;
}
return get_pte_type(page, page_table_levels - 1);
}
physaddr_t physical_address(void *linear_address)
{
return get_pte_address(linear_address, page_table_levels - 1);
}