Variable block descriptor size in bitmap_alloc

This commit is contained in:
2023-02-28 21:43:57 -06:00
parent d347b81e72
commit 5d7a1bc316
7 changed files with 501 additions and 223 deletions

1
.gitignore vendored
View File

@@ -17,3 +17,4 @@ autom4te.cache
include/config.h* include/config.h*
missing missing
stamp-h1 stamp-h1
tests/test_bitmapalloc

View File

@@ -8,7 +8,7 @@
* @brief * @brief
* *
*/ */
typedef struct typedef struct bitmap_heap_descriptor_t
{ {
/** /**
* @brief The underlying bitmap representing the availability of chunks of * @brief The underlying bitmap representing the availability of chunks of
@@ -60,6 +60,42 @@ typedef struct
*/ */
unsigned long free_block_count; unsigned long free_block_count;
/**
* @brief Bitmask used to isolate only those bits which indicate the
* availability of a block. Useful when several bits are used to represent
* the state of a single block. See `block_bits`.
*
*/
unsigned long mask;
/**
* @brief The number of bits required to represent the state of each block.
*
* If the value is greater than 1, the most significant bit describing each
* block shall indicate its availability. Less significant bits shall
* represent other aspects of the block's state. The number of trailing
* zeroes in `mask` shall be used to calculate this quantity.
*
* This qualtity is assumed to be a power of 2, and less than or equal to
* the number of bits in an unsigned long. Therefore, acceptable values for
* this quantity are as follows: 1, 2, 4, 8, 16, 32[, 64].
*
*/
unsigned long block_bits;
/**
* @brief The number of blocks described by a single unsigned long contained
* in `bitmap`. Equal to (8 * sizeof(unsigned long)) / block_bits.
*
*/
unsigned long blocks_in_word;
/**
* @brief Memory will be allocated relative to this location.
*
*/
unsigned long offset;
} bitmap_heap_descriptor_t; } bitmap_heap_descriptor_t;
/** /**
@@ -73,7 +109,8 @@ typedef struct
* @param size * @param size
* @return unsigned long * @return unsigned long
*/ */
unsigned long reserve_region(bitmap_heap_descriptor_t *heap, unsigned long size); unsigned long reserve_region(bitmap_heap_descriptor_t *heap,
unsigned long size);
/** /**
* @brief Marks the region of memory indicated by `location` and `size` as * @brief Marks the region of memory indicated by `location` and `size` as
@@ -97,13 +134,12 @@ void free_region(bitmap_heap_descriptor_t *heap, unsigned long location,
* @param block_size The minimum unit of allocation * @param block_size The minimum unit of allocation
* @return unsigned long * @return unsigned long
*/ */
unsigned long bitmap_size(const memory_map_t *map, unsigned long block_size); unsigned long bitmap_size(const memory_map_t *map, unsigned long block_size, unsigned long block_bits);
/** /**
* @brief Builds the heap's internal structures according to the memory * @brief Builds the heap's internal structures according to the memory
* layout provided in `map`. Assumes that the layout in `map` refers to the * layout provided in `map`. All locations in `map` are relative to the `offset`
* caller's virtual address space, and utilizes some of the memory marked as * field in `heap`.
* 'available' to store the heap's internal structures.
* *
* A callback function `mmap` may be provided, which will be used to map the * A callback function `mmap` may be provided, which will be used to map the
* space required by the heap to store its internal bitmaps. If `mmap` is NULL, * space required by the heap to store its internal bitmaps. If `mmap` is NULL,
@@ -111,43 +147,34 @@ unsigned long bitmap_size(const memory_map_t *map, unsigned long block_size);
* *
* There are several requirements for the initial state of the `heap` structure: * There are several requirements for the initial state of the `heap` structure:
* *
* - The `cache` field must be defined, and point to an array of unsigned longs * - The `bitmap` field may point to a pre-allocated region of memory which will
* of sufficient size. * be used to store the heap's internal bitmap. If this field is NULL, part of
* the heap will be used to store the bitmap, and `mmap`, if not NULL, will be
* called to map that region of memory.
* *
* - The `block_size` field must be set to the desired smallest unit of allocation. * - The `cache` field may point to an array of unsigned longs of sufficient
* * size, which will be used to speed up memory allocation. If this field is
* @param heap A pointer to the structure describing the heap * NULL, caching will not be performed.
* @param map A pointer to the structure providing an initial memory layout
* @param mmap A callback function used to map memory in the virtual address space
* @return int
*/
int initialize_virtual_heap(bitmap_heap_descriptor_t *heap, const memory_map_t *map,
int (*mmap)(void *location, unsigned long size));
/**
* @brief Builds the heap's internal structures according to the memory
* layout provided in `map`. Assumes that physical memory space is being alocated,
* and therefore does not make assumptions about the caller's address space or
* attempt to utilize the memory inside the heap. The caller is responsible for
* providing space to store the heap's internal structures.
*
* There are several requirements for the initial state of the `heap` structure:
*
* - The `bitmap` field must be defined, and sufficient memory reserved at that
* location to contain the heap's bitmap.
*
* - The `cache` field must be defined, and point to an array of unsigned longs
* of sufficient size.
* *
* - The `cache_capacity` field must be set to the size of the array pointed to * - The `cache_capacity` field must be set to the size of the array pointed to
* by `cache` * by `cache`.
* *
* - The `block_size` field must be set to the desired smallest unit of allocation. * - The `block_size` field must be set to the desired smallest unit of
* allocation.
*
* - The `block_bits` field must be set to the number of bits required to store
* a block's metadata.
*
* - The `offset` field must be set to the first location to allocate memory
* from. Locations in `map` will be interpreted as relative to `offset`.
* *
* @param heap A pointer to the structure describing the heap * @param heap A pointer to the structure describing the heap
* @param map A pointer to the structure providing an initial memory layout * @param map A pointer to the structure providing an initial memory layout
* @return int 0 upon success; nonzero upon failure * @param mmap A callback function used to map memory in the virtual address
* space
* @return int 0 upon success, nonzero upon failure.
*/ */
int initialize_physical_heap(bitmap_heap_descriptor_t *heap, const memory_map_t *map); int initialize_heap(bitmap_heap_descriptor_t *heap, memory_map_t *map,
int (*mmap)(void *location, unsigned long size));
#endif #endif

View File

@@ -8,6 +8,6 @@
* NOMEM shall be returned by any malloc-like function upon failure, rather than * NOMEM shall be returned by any malloc-like function upon failure, rather than
* NULL. * NULL.
*/ */
#define NOMEM ~0 #define NOMEM ((unsigned long)~0)
#endif #endif

View File

@@ -2,17 +2,19 @@
#include "libmalloc/common.h" #include "libmalloc/common.h"
#include "util.h" #include "util.h"
/* static const int BIT_AVAIL = 0;
* The number of bits contained in a single integer inside the heap's bitmap. static const int BIT_USED = 1;
* Should be either 32 or 64 depending on the host machine.
*/
static const int bitmap_word_size = 8 * sizeof(unsigned long);
/* /*
* Sets all elements in the cache's underlying array to 0. * Sets all elements in the cache's underlying array to 0.
*/ */
static inline void clear_cache(bitmap_heap_descriptor_t *heap) static inline void clear_cache(bitmap_heap_descriptor_t *heap)
{ {
if(heap->cache == (unsigned long*)0)
{
return;
}
for(int i = 0; i < heap->cache_capacity; i++) for(int i = 0; i < heap->cache_capacity; i++)
{ {
heap->cache[i] = 0; heap->cache[i] = 0;
@@ -34,22 +36,48 @@ static inline void clear_bitmap(bitmap_heap_descriptor_t *heap)
* Sets bit `index` in the heap's bitmap, marking the underlying block as * Sets bit `index` in the heap's bitmap, marking the underlying block as
* available. * available.
*/ */
static inline void set_bit(bitmap_heap_descriptor_t *heap, int index) static inline void set_bit(bitmap_heap_descriptor_t *heap, int index, int bit)
{ {
int bitmap_index = index / bitmap_word_size; if(bit < heap->block_bits)
int bitmap_offset = index % bitmap_word_size; {
heap->bitmap[bitmap_index] |= (unsigned long)1 << bitmap_offset; int bitmap_index = index / heap->blocks_in_word;
int bitmap_offset = index % heap->blocks_in_word;
unsigned long mask = (unsigned long)1 << (heap->block_bits * (bitmap_offset + 1) - 1 - bit);
heap->bitmap[bitmap_index] |= mask;
}
} }
/* /*
* Clears bit `index` in the heap's bitmap, marking the underlying block as * Clears bit `index` in the heap's bitmap, marking the underlying block as
* reserved. * reserved.
*/ */
static inline void clear_bit(bitmap_heap_descriptor_t *heap, int index) static inline void clear_bit(bitmap_heap_descriptor_t *heap, int index, int bit)
{ {
int bitmap_index = index / bitmap_word_size; if(bit < heap->block_bits)
int bitmap_offset = index % bitmap_word_size; {
heap->bitmap[bitmap_index] &= ~((unsigned long)1 << bitmap_offset); int bitmap_index = index / heap->blocks_in_word;
int bitmap_offset = index % heap->blocks_in_word;
unsigned long mask = ~((unsigned long)1
<< (heap->block_bits * (bitmap_offset + 1) - 1 - bit));
heap->bitmap[bitmap_index] &= mask;
}
}
/*
* Tests whether the block at bit `index` is available. If so, returns nonzero,
* else returns 0.
*/
static inline int test_bit(bitmap_heap_descriptor_t *heap, int index, int bit)
{
if(bit > (heap->block_bits - 1))
{
return 1;
}
unsigned long mask = ((unsigned long)1
<< (heap->block_bits * ((index % heap->blocks_in_word) + 1)
- 1
- bit));
return (heap->bitmap[index / heap->blocks_in_word] & mask) != 0;
} }
/* /*
@@ -57,33 +85,57 @@ static inline void clear_bit(bitmap_heap_descriptor_t *heap, int index)
* blocks as available. Operation is used while spltting a block to reserve one * blocks as available. Operation is used while spltting a block to reserve one
* of its child blocks. * of its child blocks.
*/ */
static inline void set_pair(bitmap_heap_descriptor_t *heap, int index) static inline void set_pair(bitmap_heap_descriptor_t *heap, int index, int bit)
{ {
int bitmap_index = index / bitmap_word_size; if(bit < heap->block_bits)
int bitmap_offset = index % bitmap_word_size; {
heap->bitmap[bitmap_index] |= (unsigned long)1 << bitmap_offset; int bitmap_index = index / heap->blocks_in_word;
heap->bitmap[bitmap_index] |= (unsigned long)1 << (bitmap_offset ^ 1); int bitmap_offset = index % heap->blocks_in_word;
unsigned long mask_a = (unsigned long)1 << (heap->block_bits * (bitmap_offset + 1) - 1 - bit);
unsigned long mask_b = (unsigned long)1 << (heap->block_bits * ((bitmap_offset ^ 1) + 1) - 1 - bit);
heap->bitmap[bitmap_index] |= mask_a;
heap->bitmap[bitmap_index] |= mask_b;
}
} }
/* /*
* Clears bit `index` and its buddy in the heap's bitmap, marking the underlying * Clears bit `index` and its buddy in the heap's bitmap, marking the underlying
* blocks as reserved. Used when merging two child blocks into a single parent block. * blocks as reserved. Used when merging two child blocks into a single parent
* block.
*/ */
static inline void clear_pair(bitmap_heap_descriptor_t *heap, int index) static inline void clear_pair(bitmap_heap_descriptor_t *heap, int index, int bit)
{ {
int bitmap_index = index / bitmap_word_size; if(bit < heap->block_bits)
int bitmap_offset = index % bitmap_word_size; {
heap->bitmap[bitmap_index] &= ~((unsigned long)1 << bitmap_offset); int bitmap_index = index / heap->blocks_in_word;
heap->bitmap[bitmap_index] &= ~((unsigned long)1 << (bitmap_offset ^ 1)); int bitmap_offset = index % heap->blocks_in_word;
unsigned long mask_a = ~((unsigned long)1 << (heap->block_bits * (bitmap_offset + 1) - 1 - bit));
unsigned long mask_b = ~((unsigned long)1 << (heap->block_bits * ((bitmap_offset ^ 1) + 1) - 1 - bit));
heap->bitmap[bitmap_index] &= mask_a;
heap->bitmap[bitmap_index] &= mask_b;
}
} }
/* /*
* Computes the location in the cache that `index` would be stored at, if it * Computes the location in the cache that `index` would be stored at, if it
* were cached. * were cached.
*/ */
static inline int cache_location_from_index(int index) static inline int cache_location_from_index(bitmap_heap_descriptor_t *heap, int index)
{ {
return llog2(index + 1) - llog2(bitmap_word_size) - 1; return llog2(index + 1) - llog2(heap->blocks_in_word) - 1;
}
/*
* Computes the location in the cache that blocks at the indicated height are
* cached at.
*/
static inline int cache_location_from_height(bitmap_heap_descriptor_t *heap, int height)
{
return heap->height - height - llog2(heap->blocks_in_word);
} }
/* /*
@@ -92,10 +144,18 @@ static inline int cache_location_from_index(int index)
*/ */
static inline int check_cache(bitmap_heap_descriptor_t *heap, int height) static inline int check_cache(bitmap_heap_descriptor_t *heap, int height)
{ {
unsigned long n = heap->cache[heap->height - height - llog2(bitmap_word_size)]; if(heap->cache != (unsigned long*)0)
heap->cache[heap->height - height - llog2(bitmap_word_size)] = 0; {
int loc = cache_location_from_height(heap, height);
unsigned long n = heap->cache[loc];
heap->cache[loc] = 0;
return n; return n;
} }
else
{
return 0;
}
}
/* /*
* If space in the cache exists, stores the provided index at the appropriate * If space in the cache exists, stores the provided index at the appropriate
@@ -103,12 +163,19 @@ static inline int check_cache(bitmap_heap_descriptor_t *heap, int height)
*/ */
static inline void store_cache(bitmap_heap_descriptor_t *heap, int index) static inline void store_cache(bitmap_heap_descriptor_t *heap, int index)
{ {
int level = cache_location_from_index(index); if(heap->cache != (unsigned long*)0)
{
int level = cache_location_from_index(heap, index);
if(level >= 0 && heap->cache[level] == 0) if(level >= 0 && heap->cache[level] == 0)
{ {
heap->cache[level] = index; heap->cache[level] = index;
} }
} }
else
{
return 0;
}
}
/* /*
* If `index` is stored in the cache, remove it. Otherwise, leave the cache * If `index` is stored in the cache, remove it. Otherwise, leave the cache
@@ -116,12 +183,19 @@ static inline void store_cache(bitmap_heap_descriptor_t *heap, int index)
*/ */
static inline void uncache(bitmap_heap_descriptor_t *heap, int index) static inline void uncache(bitmap_heap_descriptor_t *heap, int index)
{ {
int level = cache_location_from_index(index); if(heap->cache != (unsigned long*)0)
{
int level = cache_location_from_index(heap, index);
if(level >= 0 && heap->cache[level] == index) if(level >= 0 && heap->cache[level] == index)
{ {
heap->cache[level] = 0; heap->cache[level] = 0;
} }
} }
else
{
return 0;
}
}
/* /*
* Marks the indicated block as unavailable, and marks its children as both * Marks the indicated block as unavailable, and marks its children as both
@@ -133,9 +207,9 @@ static inline int split_block(bitmap_heap_descriptor_t *heap, int index)
{ {
if(index) if(index)
{ {
clear_bit(heap, index); clear_bit(heap, index, BIT_AVAIL);
index *= 2; index *= 2;
set_pair(heap, index); set_pair(heap, index, BIT_AVAIL);
store_cache(heap, index + 1); store_cache(heap, index + 1);
} }
return index; return index;
@@ -152,12 +226,12 @@ static inline int split_block(bitmap_heap_descriptor_t *heap, int index)
*/ */
static int merge_block(bitmap_heap_descriptor_t *heap, int index) static int merge_block(bitmap_heap_descriptor_t *heap, int index)
{ {
while(index > 1 && (heap->bitmap[index / bitmap_word_size] & ((unsigned long)1 << ((index % bitmap_word_size) ^ 1)))) while(index > 1 && test_bit(heap, index ^ 1, BIT_AVAIL))
{ {
uncache(heap, index ^ 1); uncache(heap, index ^ 1);
clear_pair(heap, index); clear_pair(heap, index, BIT_AVAIL);
index /= 2; index /= 2;
set_bit(heap, index); set_bit(heap, index, BIT_AVAIL);
} }
return index; return index;
} }
@@ -174,20 +248,21 @@ static int find_free_region(bitmap_heap_descriptor_t *heap, int height)
{ {
return 0; return 0;
} }
else if (height <= heap->height - ilog2(bitmap_word_size)) else if (height <= heap->height - ilog2(heap->blocks_in_word))
{ {
unsigned long cached_index = check_cache(heap, height); unsigned long cached_index = check_cache(heap, height);
if(cached_index) if(cached_index)
{ {
return cached_index; return cached_index;
} }
unsigned long start = (1 << (heap->height - height)) / bitmap_word_size; unsigned long start = (1 << (heap->height - height)) / heap->blocks_in_word;
unsigned long end = ((1 << (heap->height - height + 1)) / bitmap_word_size); unsigned long end = ((1 << (heap->height - height + 1)) / heap->blocks_in_word);
for (int index = start; index < end; index++) for (int index = start; index < end; index++)
{ {
if (heap->bitmap[index] != 0) unsigned long avail_mask = heap->bitmap[index] & heap->mask;
if (avail_mask != 0)
{ {
return bitmap_word_size * index + __builtin_ctzl(heap->bitmap[index]); return heap->blocks_in_word * index + (__builtin_ctzl(avail_mask) / heap->block_bits);
} }
} }
} }
@@ -198,25 +273,144 @@ static int find_free_region(bitmap_heap_descriptor_t *heap, int height)
#else #else
static const unsigned long bitmasks[] = {0x00000002, 0x0000000C, 0x000000F0, 0x0000FF00, 0xFFFF0000}; static const unsigned long bitmasks[] = {0x00000002, 0x0000000C, 0x000000F0, 0x0000FF00, 0xFFFF0000};
#endif #endif
int depth = heap->height - height; int bitmask_index = heap->height - height + llog2(heap->block_bits);
if (heap->bitmap[0] & bitmasks[depth]) if (heap->bitmap[0] & bitmasks[bitmask_index] & heap->mask)
{ {
return __builtin_ctzl(heap->bitmap[0] & bitmasks[depth]); return __builtin_ctzl(heap->bitmap[0] & bitmasks[bitmask_index] & heap->mask) / heap->block_bits;
} }
} }
return split_block(heap, find_free_region(heap, height + 1)); return split_block(heap, find_free_region(heap, height + 1));
} }
static unsigned long compute_memory_size(const memory_map_t *map)
{
// Find the last available region in the memory map.
int map_index = map->size - 1;
while(map->array[map_index].type != M_AVAILABLE)
{
map_index--;
}
return map->array[map_index].location + map->array[map_index].size;
}
static unsigned long generate_mask(unsigned long block_bits)
{
unsigned long blocks_in_word = 8 * sizeof(unsigned long) / block_bits;
unsigned long mask = 0;
for(unsigned long i = 1; i <= blocks_in_word; i++)
{
mask |= 1UL << (i * block_bits - 1UL);
}
return mask;
}
static int construct_heap_desc(bitmap_heap_descriptor_t *heap, const memory_map_t *map)
{
if(heap->block_bits == 0 || heap->block_bits > (8 * sizeof(*heap->bitmap)))
{
return -1;
}
else if(heap->block_size == 0)
{
return -1;
}
else if((1 << llog2(heap->block_bits)) != heap->block_bits)
{
return -1;
}
unsigned long memory_size = compute_memory_size(map);
heap->blocks_in_word = 8 * sizeof(*heap->bitmap) / heap->block_bits;
heap->bitmap_size = heap->block_bits * (memory_size / heap->block_size) / 4;
heap->bitmap_size = 1 << llog2(heap->bitmap_size);
heap->height = llog2(memory_size / heap->block_size);
heap->free_block_count = 0;
heap->mask = generate_mask(heap->block_bits);
if(heap->bitmap_size <= sizeof(*heap->bitmap))
{
return -1;
}
else if(heap->bitmap_size >= memory_size && heap->bitmap == (unsigned long*)0)
{
return -1;
}
return 0;
}
static void initialize_bitmap(bitmap_heap_descriptor_t *heap, const memory_map_t *map)
{
clear_bitmap(heap);
for(int i = 0; i < map->size; i++)
{
if(map->array[i].type != M_AVAILABLE)
{
continue;
}
unsigned long location = (map->array[i].location + heap->block_size - 1);// & ~(heap->block_size - 1);
location -= location % heap->block_size;
unsigned long region_end = map->array[i].location + map->array[i].size;
while(location + heap->block_size <= region_end)
{
int bit_offset = (location / heap->block_size) % heap->blocks_in_word;
int bitmap_index = ((1UL << (heap->height - 0)) / heap->blocks_in_word) + (location / heap->block_size) / heap->blocks_in_word;
unsigned long chunk_size = (heap->blocks_in_word - bit_offset) * heap->block_size;
if(bit_offset == 0 && (region_end - location) >= chunk_size)
{
// Set all bits in the word
heap->bitmap[bitmap_index] = heap->mask & ~0;
heap->free_block_count += heap->blocks_in_word;
}
else if(bit_offset == 0)
{
// Set the first 'count' bits
int count = (region_end - location) / heap->block_size;
heap->bitmap[bitmap_index] |= heap->mask & ((1UL << (heap->block_bits * count)) - 1);
heap->free_block_count += count;
}
else if((region_end - location) >= chunk_size)
{
// Set all bits starting at 'bit_offset'
heap->bitmap[bitmap_index] |= heap->mask & ~((1UL << (heap->block_bits * bit_offset)) - 1);
heap->free_block_count += heap->blocks_in_word - bit_offset;
}
else
{
// Set all bits starting at 'bit_offset' up to 'count'
int count = (region_end - location) / heap->block_size;
heap->bitmap[bitmap_index] |= heap->mask & ((1UL << (heap->block_bits * count)) - 1) & ~((1UL << (heap->block_bits * bit_offset)) - 1);
heap->free_block_count += count - bit_offset;
}
// Merge 'buddies' when both available
unsigned long mask = ((1UL << (2 * heap->block_bits)) - 1) & heap->mask;
for(int j = 0; j < heap->blocks_in_word / 2; j++)
{
if((heap->bitmap[bitmap_index] & mask) == mask)
{
merge_block(heap, bitmap_index * heap->blocks_in_word + j * 2);
}
mask <<= 2 * heap->block_bits;
}
location += chunk_size;
}
}
}
unsigned long reserve_region(bitmap_heap_descriptor_t *heap, unsigned long size) unsigned long reserve_region(bitmap_heap_descriptor_t *heap, unsigned long size)
{ {
int height = llog2(size / heap->block_size); int height = llog2((size - 1) / heap->block_size + 1);
int index = find_free_region(heap, height); int index = find_free_region(heap, height);
if(index) if(index)
{ {
clear_bit(heap, index); clear_bit(heap, index, BIT_AVAIL);
set_bit(heap, index, BIT_USED);
heap->free_block_count -= 1 << height; heap->free_block_count -= 1 << height;
return (heap->block_size << height) * (index - ((unsigned long)1 << (heap->height - height))); return heap->offset + (heap->block_size << height) * (index - ((unsigned long)1 << (heap->height - height)));
} }
else else
{ {
@@ -226,107 +420,54 @@ unsigned long reserve_region(bitmap_heap_descriptor_t *heap, unsigned long size)
void free_region(bitmap_heap_descriptor_t *heap, unsigned long location, unsigned long size) void free_region(bitmap_heap_descriptor_t *heap, unsigned long location, unsigned long size)
{ {
location -= heap->offset;
int height = llog2(size / heap->block_size); int height = llog2(size / heap->block_size);
int index = (location / (heap->block_size * ((unsigned long)1 << height))) + (1 << (heap->height - height)); int index = (location / (heap->block_size * ((unsigned long)1 << height))) + (1 << (heap->height - height));
set_bit(heap, index); while(!test_bit(heap, index, BIT_USED))
{
height++;
index /= 2;
}
set_bit(heap, index, BIT_AVAIL);
clear_bit(heap, index, BIT_USED);
index = merge_block(heap, index); index = merge_block(heap, index);
store_cache(heap, index); store_cache(heap, index);
heap->free_block_count += 1 << height; heap->free_block_count += 1 << height;
} }
unsigned long bitmap_size(const memory_map_t *map, unsigned long block_size) unsigned long bitmap_size(const memory_map_t *map, unsigned long block_size, unsigned long block_bits)
{ {
// Find the last available region in the memory map. return 1UL << llog2((block_bits * compute_memory_size(map) / block_size) / 4);
int map_index = map->size - 1;
while(map->array[map_index].type != M_AVAILABLE)
{
map_index--;
} }
// Take memory_size to be the last available location in the memory map. int initialize_heap(bitmap_heap_descriptor_t *heap, memory_map_t *map, int (*mmap)(void *location, unsigned long size))
// Round memory_size up to nearest power of 2 {
unsigned long memory_size = 1 << llog2(map->array[map_index].location + map->array[map_index].size); if(construct_heap_desc(heap, map))
return (memory_size / block_size) / 4;
}
int initialize_virtual_heap(bitmap_heap_descriptor_t *heap, const memory_map_t *map, int (*mmap)(void *location, unsigned long size))
{ {
/* Not yet implemented */
return -1; return -1;
} }
int initialize_physical_heap(bitmap_heap_descriptor_t *heap, const memory_map_t *map) if(heap->bitmap == (unsigned long*)0)
{ {
// Find the last available region in the memory map. int map_index = 0;
int map_index = map->size - 1; while(map->array[map_index].size < heap->bitmap_size)
while(map->array[map_index].type != M_AVAILABLE)
{ {
map_index--; map_index++;
if(map_index >= map->size)
{
return -1;
}
} }
// Take memory_size to be the last available location in the memory map. heap->bitmap = (unsigned long*)(heap->offset + map->array[map_index].location);
// Round memory_size up to nearest power of 2 memmap_insert_region(map, map->array[map_index].location, heap->bitmap_size, M_UNAVAILABLE);
unsigned long memory_size = 1 << llog2(map->array[map_index].location + map->array[map_index].size); if(mmap && mmap(heap->bitmap, heap->bitmap_size))
heap->bitmap_size = (memory_size / heap->block_size) / 4;
heap->height = llog2(memory_size / heap->block_size);
heap->free_block_count = 0;
clear_bitmap(heap);
for(int i = 0; i < map->size; i++)
{ {
if(map->array[i].type != M_AVAILABLE) return -1;
{ }
continue;
} }
unsigned long location = (map->array[i].location + heap->block_size - 1) & ~(heap->block_size - 1); initialize_bitmap(heap, map);
unsigned long region_end = map->array[i].location + map->array[i].size;
while(location + heap->block_size <= region_end)
{
int bit_offset = (location / heap->block_size) % bitmap_word_size;
int bitmap_index = ((1 << (heap->height - 0)) / bitmap_word_size) + (location / heap->block_size) / bitmap_word_size;
unsigned long chunk_size = (bitmap_word_size - bit_offset) * heap->block_size;
if(bit_offset == 0 && (region_end - location) >= chunk_size)
{
// Set all bits in the word
heap->bitmap[bitmap_index] = ~0;
heap->free_block_count += bitmap_word_size;
}
else if(bit_offset == 0)
{
// Set the first 'count' bits
int count = (region_end - location) / heap->block_size;
heap->bitmap[bitmap_index] |= (1 << count) - 1;
heap->free_block_count += count;
}
else if((region_end - location) >= chunk_size)
{
// Set all bits starting at 'bit_offset'
heap->bitmap[bitmap_index] |= ~((1 << bit_offset) - 1);
heap->free_block_count += bitmap_word_size - bit_offset;
}
else
{
// Set all bits starting at 'bit_offset' up to 'count'
int count = (region_end - location) / heap->block_size;
heap->bitmap[bitmap_index] |= ((1 << count) - 1) & ~((1 << bit_offset) - 1);
heap->free_block_count += count - bit_offset;
}
// Merge 'buddies' when both available
unsigned long mask = 3;
for(int j = 0; j < bitmap_word_size / 2; j++)
{
if((heap->bitmap[bitmap_index] & mask) == mask)
{
merge_block(heap, bitmap_index * bitmap_word_size + j * 2);
}
mask <<= 2;
}
location += chunk_size;
}
}
clear_cache(heap); clear_cache(heap);
return 0; return 0;
} }

View File

@@ -1,6 +1,6 @@
if BUILD_TESTS if BUILD_TESTS
noinst_PROGRAMS = test_buddyalloc noinst_PROGRAMS = test_bitmapalloc
test_buddyalloc_SOURCES = test_buddyalloc.c test_bitmapalloc_SOURCES = test_bitmapalloc.c
test_buddyalloc_LDADD = ../src/libmalloc.a test_bitmapalloc_LDADD = ../src/libmalloc.a
endif endif

160
tests/test_bitmapalloc.c Normal file
View File

@@ -0,0 +1,160 @@
#include "libmalloc/bitmap_alloc.h"
#include "util.h"
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <time.h>
typedef struct memblock_t
{
unsigned long size;
unsigned long location;
} memblock_t;
void print_heap_desc(bitmap_heap_descriptor_t *heap)
{
printf("heap = {\n"
"\t.bitmap = %p\n"
"\t.bitmap_size = %i\n"
"\t.cache = %p\n"
"\t.cache_capacity = %i\n"
"\t.block_size = %i\n"
"\t.height = %i\n"
"\t.free_block_count = %i\n"
"\t.mask = %lX\n"
"\t.block_bits = %i\n"
"\t.blocks_in_word = %i\n"
"\t.offset = %p\n"
"}\n",
heap->bitmap,
heap->bitmap_size,
heap->cache,
heap->cache_capacity,
heap->block_size,
heap->height,
heap->free_block_count,
heap->mask,
heap->block_bits,
heap->blocks_in_word,
heap->offset);
}
void print_memory_map(memory_map_t *map)
{
printf("map = {\n"
"\t.size = %i\n"
"\t.capacity = %i\n"
"\t.array = {",
map->size,
map->capacity);
for(int i = 0; i < map->size; i++)
{
printf("{.type = %i, .location = %lX, .size = %i} ", \
map->array[i].type,
map->array[i].location,
map->array[i].size);
}
printf("}\n}\n");
}
void test_heap(unsigned long size, unsigned long block_size, unsigned long bits, int result)
{
printf("[TEST] Bitmap allocator: memory=%lX, block_size=%lu, block_bits=%lu\n", size, block_size, bits);
const int memory_map_capacity = 32;
const int cache_capacity = 20;
memory_region_t arr[memory_map_capacity];
unsigned long heap_cache[cache_capacity];
void *heap_data = malloc(size);
memory_map_t memory_map = {
.array = arr,
.capacity = memory_map_capacity,
.size = 0
};
bitmap_heap_descriptor_t heap = {
.bitmap = NULL,
.block_size = block_size,
.cache = heap_cache,
.cache_capacity = cache_capacity,
.block_bits = bits,
.offset = (unsigned long)heap_data
};
memmap_insert_region(&memory_map, 0, size, M_AVAILABLE);
int status = initialize_heap(&heap, &memory_map, NULL);
assert(!(!status != !result));
if(status)
{
return;
}
print_heap_desc(&heap);
print_memory_map(&memory_map);
unsigned long total_blocks = heap.free_block_count;
memblock_t *reserved_blocks = malloc(sizeof(memblock_t) * size / heap.block_size);
unsigned long count = 0;
while(1)
{
memblock_t next_block;
next_block.size = heap.block_size * (rand() % 8 + 1);
next_block.location = reserve_region(&heap, next_block.size);
if(next_block.location != NOMEM)
{
char *s = (char*)next_block.location;
for(int i = 0; i < next_block.size; i++)
{
s[i] = (char)rand();
}
reserved_blocks[count] = next_block;
count++;
}
else
{
printf("\tOut of memory: %i free blocks left, %i total blocks, %i allocations. Tried to allocate %i bytes.\n", heap.free_block_count, total_blocks, count, next_block.size);
break;
}
}
for(int i = 0; i < count; i++)
{
assert(reserved_blocks[i].location >= heap.offset);
assert(reserved_blocks[i].location + reserved_blocks[i].size <= heap.offset + size);
for(int j = i + 1; j < count; j++)
{
assert((reserved_blocks[j].location + reserved_blocks[j].size) <= reserved_blocks[i].location
|| reserved_blocks[j].location >= (reserved_blocks[i].location + reserved_blocks[i].size));
}
}
for(int i = 0; i < count; i++)
{
free_region(&heap, reserved_blocks[i].location, bits < 2 ? reserved_blocks[i].size : 0);
}
assert(heap.free_block_count == total_blocks);
free(reserved_blocks);
free(heap_data);
}
int main(int argc, char **args)
{
srand(time(0));
test_heap(32, 1, 1, 1);
test_heap(256, 0, 1, 1);
test_heap(256, 1, 0, 1);
test_heap(256, 1, 3, 1);
test_heap(256, 1, 128, 1);
test_heap(256, 1, 4, 1);
for(int bs = 1; bs <= 32; bs++)
{
unsigned long n = (8 * sizeof(unsigned long)) - 1 - __builtin_clzl((unsigned long) bs);
for(int bits = 1; bits <= (8 * sizeof(unsigned long)) && (2 * bits) < (8 * (1 << n)); bits <<= 1)
{
test_heap(1024, bs, bits, 0);
}
}
}

View File

@@ -1,51 +0,0 @@
#include "libmalloc/bitmap_alloc.h"
#include "util.h"
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
int main(int argc, char **args)
{
const int memory_map_capacity = 32;
const int heap_size = 1 << 20;
const int cache_capacity = 20;
memory_region_t arr[memory_map_capacity];
unsigned long heap_cache[cache_capacity];
memory_map_t memory_map = {
.array = arr,
.capacity = memory_map_capacity,
.size = 0
};
bitmap_heap_descriptor_t heap = {
.bitmap = malloc(heap_size / 4),
.block_size = 1,
.cache = heap_cache,
.cache_capacity = cache_capacity
};
memmap_insert_region(&memory_map, 0, heap_size, M_AVAILABLE);
initialize_physical_heap(&heap, &memory_map);
unsigned long *reserved_blocks = malloc(sizeof(unsigned long) * heap_size);
for(int i = 0; i < heap_size; i++)
{
reserved_blocks[i] = reserve_region(&heap, 1);
}
/*for(int i = 0; i < heap_size; i++)
{
for(int j = i + 1; j < heap_size; j++)
{
assert(reserved_blocks[i] != reserved_blocks[j]);
}
}*/
for(int i = 0; i < heap_size; i++)
{
free_region(&heap, reserved_blocks[i], 1);
}
assert(heap.free_block_count == heap_size);
}